Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4252, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762594

RESUMEN

Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe2, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe2 is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics.

2.
Chem Rev ; 124(2): 420-454, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38146851

RESUMEN

The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.

3.
Natl Sci Rev ; 10(2): nwac108, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36969369

RESUMEN

Acidic water electrolysis is of great importance for boosting the development of renewable energy. However, it severely suffers from the trade-off between high activity and long lifespan for oxygen evolution catalysts on the anode side. This is because the sluggish kinetics of oxygen evolution reaction necessitates the application of a high overpotential to achieve considerable current, which inevitably drives the catalysts far away from their thermodynamic equilibrium states. Here we demonstrate a new oxygen evolution model catalyst-hierarchical palladium (Pd) whose performance even surpasses the benchmark Ir- and Ru-based materials. The Pd catalyst displays an ultralow overpotential (196 mV), excellent durability and mitigated degradation (66 µV h-1) at 10 mA cm-2 in 1 M HClO4. Tensile strain on Pd (111) facets weakens the binding of oxygen species on electrochemical etching-derived hierarchical Pd and thereby leads to two orders of magnitudes of enhancement of mass activity in comparison to the parent Pd bulk materials. Furthermore, the Pd catalyst displays the bifunctional catalytic properties for both oxygen and hydrogen evolutions and can deliver a current density of 2 A cm-2 at a low cell voltage of 1.771 V when fabricated into polymer electrolyte membrane electrolyser.

4.
Adv Mater ; 35(16): e2209365, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36797646

RESUMEN

Van der Waals (vdW) layered materials with strong magnetocrystalline anisotropy have attracted significant interest as the long-range magnetic order in these systems can survive even when their thicknesses is reduced to the 2D limit. Even though the interlayer coupling between the neighboring magnetic layers is very weak, it has a determining effect on the magnetism of these atomic-thickness materials. Herein, a new 2D ferromagnetic material, namely, non-vdW CuCrSe2 nanosheets with even-odd-layer-dependent ferromagnetism when laminated from an antiferromagnetic bulk is reported. Monolayer and even-layer CuCrSe2 exhibit the anomalous Hall effect and a significantly enhanced magnetic ordering temperature of more than 125 K. In contrast, the linear Hall effect exists in the odd-layer samples. Theoretical calculations indicate that the layer-dependent magnetic coupling is attributable to the orbital shift of the Cr atoms in the CrSe2 layers owing to the Cu-induced breaking of the centrosymmetry. Thus, this work sheds light on the exotic magnetic properties of layered materials that exhibit phenomena beyond weak interlayer interactions.

5.
ACS Nano ; 16(7): 11152-11160, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35749566

RESUMEN

Lowering thermal conductivity via introducing heterointerfaces of heterophase fillings (HPFs) is a common strategy for optimizing thermoelectric performance, but it is always accompanied by deterioration of electrical conductivity. Here we report an ordered magnetic HPF system in a CoSe2-SnSe mosaic heterostructure superlattice synthesized by van der Waals confined epitaxial growth (vdWCEG), which realizes a maximized filling amount to decrease in-plane thermal conductivity of SnSe layers and maintain the intact in-plane carrier transport path. The in-plane thermal conductivity of CoSe2-SnSe superlattice reaches the lowest range among SnSe-based materials with a value of 0.27 W m-1 K-1 at 850 K, which can be attributed to abundant interfaces between CoSe2 nanocrystals and SnSe layers. Moreover, the CoSe2 nanocrystals show superparamagnetic behavior, by which the rotation of magnetic domains provides additional phonon scattering to further decrease in-plane thermal conductivity. By combination with the preserved in-plane electrical conductivity of SnSe layers, an enhanced in-plane ZT value of 0.62 is achieved at 850 K. This vdWCEG approach can also be generally applied to fabricate various other two-dimensional (2D) mosaic heterostructures, providing an avenue for artificial 2D heterostructures with desired functionalities.

6.
Sensors (Basel) ; 22(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35408405

RESUMEN

Low signal-to-noise ratio (SNR) infrared point target detection and tracking is crucial to study regarding infrared remote sensing. In the low-SNR images, the intensive noise will submerge targets. In this letter, a saliency-guided double-stage particle filter (SGDS-PF) formed by the searching particle filter (PF) and tracking PF is proposed to detect and track targets. Before the searching PF, to suppress noise and enhance targets, the single-frame and multi-frame target accumulation methods are introduced. Besides, the likelihood estimation filter and image block segmentation are proposed to extract the likelihood saliency and obtain proper proposal density. Guided by this proposal density, the searching PF detects potential targets efficiently. Then, with the result of the searching PF, the tracking PF is adopted to track and confirm the potential targets. Finally, the path of the real targets will be output. Compared with the existing methods, the SGDS-PF optimizes the proposal density for low-SNR images. Using a few accurate particles, the searching PF detects potential targets quickly and accurately. In addition, initialized by the searching PF, the tracking PF can keep tracking targets using very few particles even under intensive noise. Furthermore, the parameters have been selected appropriately through experiments. Extensive experimental results show that the SGDS-PF has an outstanding performance in tracking precision, tracking reliability, and time consumption. The SGDS-PF outperforms the other advanced methods.


Asunto(s)
Ruido , Probabilidad , Reproducibilidad de los Resultados , Relación Señal-Ruido
7.
Nat Chem ; 13(12): 1235-1240, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34663918

RESUMEN

Layered materials have attracted tremendous interest for accessing two-dimensional structures. Materials such as graphite or transition metal dichalcogenides, in which the layers are held together by van der Waals interactions, can be exfoliated through a variety of processes in a manner that retains the structure and composition of the monolayers, but this has proven difficult for solids with stronger interlayer interactions. Here, we demonstrate the exfoliation of AgCrS2, a member of the AMX2 family (where A is a monovalent metal, M is a trivalent metal and X is a chalcogen), through intercalation with tetraalkylammonium cations, chosen for their suitable redox potential. The as-exfoliated nanosheets consist of Ag layers sandwiched between two CrS2 layers, similar to their structure in the bulk. They show superionic behaviour at room temperature, with an ionic conductivity of 33.2 mS cm-1 at 298 K that originates from Ag+ ions rapidly hopping between neighbouring tetrahedral interstices; in the bulk, this behaviour is only observed above 673 K.

8.
J Am Chem Soc ; 142(43): 18645-18651, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32902961

RESUMEN

Fast ionic conductors are of great importance for novel technologies in high-performance and rechargeable energy storage components with reliable safety and thermal stability. Here, we demonstrate a new concept of the pillar effect to construct two-dimensional (2D) fast Li+ conductors. Our developed layered LixAg1-xCrS2 (0 < x < 0.4) structure, with larger-radius Ag+ served as "pillars" to effectively rigidify the interlayer ionic channel, leads to multi-ion concerted migration behavior and thus contributes to low activation energy and fast Li+ diffusion. Consequently, the room-temperature ionic conductivity in (Li-Ag)CrS2 system reaches up to 19.6 mS·cm-1 for x is 0.31, which is comparable to that of currently best Li-ion conductors. Furthermore, the pillared structure exhibits unique ionic transport that the conductivity decreases as temperature elevated, which can be ascribed to the competition between Li+ and Ag+ migration through tetrahedral viods in 2D channel. We anticipated that pillar effect would pave a new way to explore new catalogue of Li superionic conductors.

9.
J Am Chem Soc ; 139(45): 16398-16404, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29068204

RESUMEN

Superconductivity is mutually exclusive with ferromagnetism, because the ferromagnetic exchange field is often destructive to superconducting pairing correlation. Well-designed chemical and physical methods have been devoted to realize their coexistence only by structural integrity of inherent superconducting and ferromagnetic ingredients. However, such coexistence in freestanding structure with nonsuperconducting and nonferromagnetic components still remains a great challenge up to now. Here, we demonstrate a molecule-confined engineering in two-dimensional organic-inorganic superlattice using a chemical building-block approach, successfully realizing first freestanding coexistence of superconductivity and ferromagnetism originated from electronic interactions of nonsuperconducting and nonferromagnetic building blocks. We unravel totally different electronic behavior of molecules depending on spatial confinement: flatly lying Co(Cp)2 molecules in strongly confined SnSe2 interlayers weaken the coordination field, leading to spin transition to form ferromagnetism; meanwhile, electron transfer from cyclopentadienyls to the Se-Sn-Se lattice induces superconducting state. This entirely new class of coexisting superconductivity and ferromagnetism generates a unique correlated state of Kondo effect between the molecular ferromagnetic layers and inorganic superconducting layers. We anticipate that confined molecular chemistry provides a newly powerful tool to trigger exotic chemical and physical properties in two-dimensional matrixes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA