Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Appl Neuropsychol Adult ; : 1-19, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354094

RESUMEN

We present adult normalized data for MindPulse (MP), a new tool evaluating attentional and executive functioning (AEF) in decision-making. We recruited 722 neurotypical participants (18-80 years), with 149 retested. The MP test includes three tasks: Simple Reaction Time (SRT), Go/No-go, and complex Go/No-go, involving perceptual components, motor responses, and measurements of reaction time (RT) and correctness. We compare responses, evaluating 14 cognitive indices (including new composite indices to describe AEF: Executive Speed and Reaction to Difficulty). We adjust for age/sex effects, introduce a difficulty scale, and consider standard deviations, aberrant times, and Spearman Correlation for speed-accuracy balance. Wilcoxon unpaired rank test is used to assess sex effects, and linear regression is employed to assess the age linear dependency model on the normalized database. The study demonstrated age and sex effects on RTs, in all three subtests, and the ability to correct it for individual results. The test showed excellent validity (Cronbach Alpha for the three subtasks is 92, 87, 95%) and high internal consistency (p < 0.001 for each subtask significantly faster than the more complex subtask) of the MP across the wide age range. Results showed correlation within the three RT parts of the test (p < .001 for each) and the independence of SRT, RD, and ES indices. The Retest effect was lower than intersubject variance, showing consistency over time. This study highlights the MP test's strong validity on a homogeneous, large adult sample. It emphasizes assessing AEF and Reaction to Difficulty dynamically with high sensitivity.

2.
Brain Sci ; 13(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37891811

RESUMEN

Seizure-mediated oxidative stress is a crucial mechanism in the pathophysiology of epilepsy. This study evaluated the antioxidant effects of daytime-restricted feeding (DRF) and the role of the Nrf2 signaling pathway in a lithium-pilocarpine model seizure model that induces status epilepticus (SE). We performed a lipoperoxidation assay and dihydroethidium fluorescence to measure oxidative stress markers in the hippocampus (malondialdehyde and reactive oxygen species). The protein content of Nrf2 and its downstream protein SOD2 was evaluated using Western blotting. The cellular distribution of the Nrf2 and SOD2 proteins in the pyramidal cell layer of both the CA1 and CA3 hippocampal subfields and astrocytes (GFAP marker) were quantified using immunofluorescence and immunohistochemistry, respectively. Our results indicate that DRF reduced the malondialdehyde levels and the production of reactive oxygen species. Furthermore, a significant increase in Nrf2 and SOD2 protein content was observed in animals subjected to restrictive diet. In addition, DRF increased the relative intensity of the Nrf2 fluorescence in the perinuclear and nuclear compartments of pyramidal neurons in the CA1 subfield. Nrf2 immunoreactivity and the astrocyte marker GFAP also increased their colocalization under DRF conditions. Additionally, SOD2 immunoreactivity was increased in CA1 pyramidal neurons but not in the CA3 region. Our findings suggest that DRF partially prevents oxidative stress by increasing the Nrf2 transcriptional factor and the SOD2 enzyme during the development of SE.

3.
Gene ; 877: 147565, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315635

RESUMEN

BACKGROUND: The use of novel and accurate techniques to identify genetic variants (with or without a record in the National Center for Biotechnology Information (NCBI) database) improves diagnosis, prognosis, and therapeutics for patients with epilepsy, especially in populations for whom such techniques exist. The aim of this study was to find a genetic profile in Mexican pediatric epilepsy patients by focusing on ten genes associated with drug-resistant epilepsy (DRE). METHODS: This was a prospective, analytical, cross-sectional study of pediatric patients with epilepsy. Informed consent was granted by the patients' guardians or parents. Genomic DNA from the patients was sequenced using next-generation sequencing (NGS). For statistical analysis, Fisher's exact, Chi-square or Mann-Whitney U, and OR (95% CI) tests were performed, with significance values of p < 0.05. RESULTS: Fifty-five patients met the inclusion criteria (female 58.2%, ages 1-16 years); 32 patients had controlled epilepsy (CTR), and 23 had DRE. Four hundred twenty-two genetic variants were identified (71.3% with a known SNP registered in the NCBI database). A dominant genetic profile consisting of four haplotypes of the SCN1A, CYP2C9, and CYP2C19 genes was identified in most of the patients studied. When comparing the results between patients with DRE and CTR, the prevalence of polymorphisms in the SCN1A (rs10497275, rs10198801, and rs67636132), CYP2D6 (rs1065852), and CYP3A4 (rs2242480) genes showed statistical significance (p = 0.021). Finally, the number of missense genetic variants in patients in the nonstructural subgroup was significantly higher in DRE than in CTR (1 [0-2] vs. 3 [2-4]; p = 0.014). CONCLUSIONS: The Mexican pediatric epilepsy patients included in this cohort presented a characteristic genetic profile infrequent in the Mexican population. SNP rs1065852 (CYP2D6*10) is associated with DRE, especially with nonstructural damage. The presence of three genetic alterations affecting the CYP2B6, CYP2C9, and CYP2D6 cytochrome genes is associated with nonstructural DRE.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Niño , Femenino , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C9/genética , Relevancia Clínica , Estudios Transversales , Estudios Prospectivos , Epilepsia/genética
4.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36850284

RESUMEN

The main purpose of this work is to contribute to understanding the mechanism of oxidation of the polymeric components of common disposable masks used during the COVID-19 pandemic to offer the chemical basis to understand their long-term behavior under typical environmental conditions. Artificial aging of representative mask layers under isothermal conditions (110 °C) or accelerated photoaging showed that all the PP-made components underwent a fast oxidation process, following the typical hydrocarbon oxidation mechanism. In particular, yellowing and the melting temperature drop are early indicators of their diffusion-limited oxidation. Morphology changes also induced a loss of mechanical properties, observable as embrittlement of the fabric fibers. Results were validated through preliminary outdoor aging of masks, which allows us to predict they will suffer fast and extensive oxidation only in the case of contemporary exposure to sunlight and relatively high environmental temperature, leading to their extensive breakdown in the form of microfiber fragments, i.e., microplastics.

5.
J Biochem Mol Toxicol ; 37(5): e23315, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36732937

RESUMEN

Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A-E), receptor types (VEGFR1-3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.


Asunto(s)
Hipocampo , Corteza Motora , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Hipocampo/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Glutamato de Sodio/toxicidad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales
6.
Nutr Neurosci ; 26(4): 275-289, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35282801

RESUMEN

Inflammation and oxidative stress are critical events involved in neurodegeneration. In animal models, it has been shown that chronic consumption of a hypercaloric diet, which leads to inflammatory processes, affects the hippocampus, a brain region fundamental for learning and memory processes. In addition, advanced age and menopause are risk factors for neurodegeneration. Hormone replacement therapy (HRT) ameliorates menopause symptoms. Tibolone (TB), a synthetic hormone, exerts estrogenic, progestogenic and androgenic effects on different tissues. We aimed to determine the effect of short-term TB administration on oxidative stress and inflammation markers in the hippocampus of ovariectomized rats fed a high-fat-and-fructose diet (HFFD). Adult female rats were ovariectomized (OVX) and fed standard diet or HFFD-consisting of 10% lard supplemented chow and 20% high-fructose syrup in the drinking water-and administered vehicle or TB (1 mg/kg for seven days). Finally, we administered hormone receptor antagonists (MPP, RU486 or FLU) to each of the OVX + HFFD + TB groups. Bodyweight, triglycerides and cholesterol, oxidative stress and inflammation markers, and the activity and expression of antioxidant enzymes were quantified in the hippocampus of each experimental group. We observed that short-term TB administration significantly reduced body weight, AGEs, MDA levels, increased SOD and GPx activity, improved GSH/GSSG ratio, and reduced IL-6 and TNF-α. Our findings suggest that short-term administration of TB decreases oxidative stress and reduces inflammation caused by HFFD and early estrogenic decline. These effects occurred via estrogen receptor alpha.


Asunto(s)
Fructosa , Estrés Oxidativo , Ratas , Femenino , Animales , Fructosa/efectos adversos , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Peso Corporal , Hipocampo/metabolismo , Hormonas/metabolismo , Hormonas/farmacología
7.
J Inorg Biochem ; 238: 112027, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345068

RESUMEN

Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Boro , Compuestos de Boro/química , Neuronas , Inflamación
8.
J Alzheimers Dis ; 90(4): 1437-1447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278346

RESUMEN

BACKGROUND: Alzheimer's disease (AD) affects women more than men and consequently has been associated with menopause. Tibolone (TIB) has been used as a hormone replacement therapy to alleviate climacteric symptoms. Neuroprotective effects of TIB have also been reported in some animal models. OBJECTIVE: This study aimed to assess the effect of TIB on memory and Aß peptides and tau protein content in the hippocampus and cerebellum of transgenic 3xTgAD ovariectomized mice. METHODS: Three-month-old female mice were ovariectomized. Ten days after surgery, animals were divided into four groups: wild-type (WT)+vehicle; WT+TIB (1 mg/kg); 3xTgAD+vehicle; and 3xTgAD+TIB (1 mg/kg). TIB was administered for three months, and memory was evaluated using the object-in-context recognition task. Subsequently, animals were decapitated, and the hippocampus and cerebellum were dissected. Using commercial ELISA kits, these brain structures were homogenized in a PBS buffer for quantifying Aß40 and Aß42 and phosphorylated and total tau.ResultsA long-term memory deficit was observed in the 3xTgAD+vehicle group. In contrast, TIB treatment improved long-term memory in the 3xTgAD+TIB group than those treated with vehicle (p < 0.05). Furthermore, TIB treatment decreased Aß and tau content in the hippocampus of 3xTgAD mice compared to vehicle-treated groups (p < 0.05). No significant changes were observed in the cerebellum. CONCLUSION: Chronic treatment with TIB showed neuroprotective effects and delayed AD neuropathology in the 3xTgAD mice. Our results support hormone replacement therapy with TIB in menopausal women for neuroprotection.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Animales , Femenino , Ratones , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hipocampo/patología , Ratones Transgénicos
9.
Pharmaceutics ; 14(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36015236

RESUMEN

This study aimed to determine if orally administered cannabidiol (CBD) lessens the cortical over-release of glutamate induced by a severe traumatic brain injury (TBI) and facilitates functional recovery. The short-term experiment focused on identifying the optimal oral pretreatment of CBD. Male Wistar rats were pretreated with oral administration of CBD (50, 100, or 200 mg/kg) daily for 7 days. Then, extracellular glutamate concentration was estimated by cortical microdialysis before and immediately after a severe TBI. The long-term experiment focused on evaluating the effect of the optimal treatment of CBD (pre- vs. pre- and post-TBI) 30 days after trauma. Sensorimotor function, body weight, and mortality rate were evaluated. In the short term, TBI induced a high release of glutamate (738% ± 173%; p < 0.001 vs. basal). Oral pretreatment with CBD at all doses tested reduced glutamate concentration but with higher potency at when animals received 100 mg/kg (222 ± 33%, p < 0.01 vs. TBI), an effect associated with a lower mortality rate (22%, p < 0.001 vs. TBI). In the long-term experiment, the TBI group showed a high glutamate concentration (149% p < 0.01 vs. SHAM). In contrast, animals receiving the optimal treatment of CBD (pre- and pre/post-TBI) showed glutamate concentrations like the SHAM group (p > 0.05). This effect was associated with high sensorimotor function improvement. CBD pretreatment, but not pre-/post-treatment, induced a higher body weight gain (39% ± 2.7%, p < 0.01 vs. TBI) and lower mortality rate (22%, p < 0.01 vs. TBI). These results support that orally administered CBD reduces short- and long-term TBI-induced excitotoxicity and facilitated functional recovery. Indeed, pretreatment with CBD was sufficient to lessen the adverse sequelae of TBI.

10.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897646

RESUMEN

The CatSper channel localizes exclusively in the flagella of sperm cells. The Catsper1 protein, together with three pore units, is essential for the CatSper Channel formation, which produces flagellum hyperactivation and confers sperm fertility. Catsper1 expression is dependent on Sox transcription factors, which can recognize in vitro at least three Sox binding sites on the promoter. Sox transcription factors have calmodulin-binding domains for nuclear importation. Calmodulin (CaM) is affected by the specific inhibitor calmidazolium (CMZ), which prevents the nuclear transport of Sox factors. In this work, we assess the regulation of the Catsper1 promoter in vivo by Sox factors in the murine testis and evaluate the effects of the inhibitor calmidazolium on the expression of the Casper genes, and the motility and fertility of the sperm. Catsper1 promoter has significant transcriptional activity in vivo; on the contrary, three Sox site mutants in the Catsper1 promoter reduced transcriptional activity in the testis. CaM inhibition affects Sox factor nuclear transport and has notable implications in the expression and production of Catsper1, as well as in the motility and fertility capability of sperm. The molecular mechanism described here might conform to the basis of a male contraceptive strategy acting at the transcriptional level by affecting the production of the CatSper channel, a fundamental piece of male fertility.


Asunto(s)
Canales de Calcio , Calmodulina , Animales , Canales de Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Regulación hacia Abajo , Fertilidad , Imidazoles , Masculino , Ratones , Factores de Transcripción SOX/genética , Semen/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/metabolismo
11.
Curr Pharm Des ; 28(28): 2283-2297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35713147

RESUMEN

Epilepsy is the most common chronic neurological disease, affecting approximately 65 million people worldwide, with mesial temporal lobe epilepsy (mTLE) being the most common type, characterized by the presence of focal seizures that begin in the hippocampus, and subsequently generalize to structures such as the cerebral cortex. It is estimated that approximately 40% of patients with mTLE develop drug resistance (DR), whose pathophysiological mechanisms remain unclear. The neuronal network hypothesis is one attempt to understand the mechanisms underlying resistance to antiepileptic drugs (AEDs), since recurrent seizure activity generates excitotoxic damage and activation of neuronal death and survival pathways that, in turn, promote the formation of aberrant neuronal networks. This review addresses the mechanisms that are activated, perhaps as compensatory mechanisms in response to the neurological damage caused by epileptic seizures, but that affect the formation of aberrant connections that allow the establishment of inappropriate circuits. On the other hand, glia seems to have a relevant role in post-seizure plasticity, thus supporting the hypothesis of the neuronal network in drug-resistant epilepsy, which has been proposed for ELT.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Anticonvulsivantes/uso terapéutico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Hipocampo , Humanos , Neuroglía , Convulsiones/tratamiento farmacológico
12.
Epilepsia Open ; 7 Suppl 1: S68-S80, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35247028

RESUMEN

More than one-third of people with epilepsy develop drug-resistant epilepsy (DRE). Different hypotheses have been proposed to explain the origin of DRE. Accumulating evidence suggests the contribution of neuroinflammation, modifications in the integrity of the blood-brain barrier (BBB), and altered immune responses in the pathophysiology of DRE. The inflammatory response is mainly due to the increase of cytokines and related molecules; these molecules have neuromodulatory effects that contribute to hyperexcitability in neural networks that cause seizure generation. Some patients with DRE display the presence of autoantibodies in the serum and mainly cerebrospinal fluid. These patients are refractory to the different treatments with standard antiseizure medications (ASMs), and they could be responding well to immunomodulatory therapies. This observation emphasizes that the etiopathogenesis of DRE is involved with immunology responses and associated long-term events and chronic inflammation processes. Furthermore, multiple studies have shown that functional polymorphisms as risk factors are involved in inflammation processes. Several relevant polymorphisms could be considered risk factors involved in inflammation-related DRE such as receptor for advanced glycation end products (RAGE) and interleukin 1ß (IL-1ß). All these evidences sustained the hypothesis that the chronic inflammation process is associated with the DRE. However, the effect of the chronic inflammation process should be investigated in further clinical studies to promote the development of novel therapeutics useful in treatment of DRE.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Barrera Hematoencefálica , Epilepsia/tratamiento farmacológico , Humanos , Enfermedades Neuroinflamatorias , Receptor para Productos Finales de Glicación Avanzada/uso terapéutico
13.
AAPS J ; 24(3): 50, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35352186

RESUMEN

This report summarizes podium presentations and breakout sessions from the second day of the 2019 M-CERSI workshop on In Vitro Dissolution Similarity Assessment in Support of Drug Product Quality: What, How, and When? Presenters from the U.S. Food and Drug Administration (FDA), Health Canada (HC), European Medicines Agency (EMA), Brazilian Health Surveillance Agency (ANVISA), and the pharmaceutical industry shared experiences/concerns with dissolution profile similarity assessment supporting minor/moderate Chemistry, Manufacturing and Control (CMC) changes. Members from regulatory agencies explained that dissolution profile similarity testing is only part of the overall assessment of the acceptability of the proposed changes; decisions are usually made based on aggregate weight of evidence. Scientific shortcomings of f2 were highlighted but no proposal on how to replace it was made. Controlling dissolution timepoint variability and application of pairwise batch-to-batch comparisons (PBC) of dissolution profiles caused considerable debate. Several industry participants suggested increased sample sizes to raise confidence in decision-making and to avoid PBC. They proposed identification of a single mathematical method with predefined acceptance criteria and suggested that dissolution timepoint selection should follow EMA and HC guidance. A majority of meeting attendees favored applying clinically relevant dissolution specifications (CRDS) and dissolution safe space to determine the impact of minor/moderate CMC changes as opposed to dissolution profile similarity assessment via statistical methods. Day 2 of the workshop highlighted the need and opportunities for global harmonization including variability, timepoint selection, role of CRDS, and statistical methods to address the ambiguity globally operating pharmaceutical companies are currently facing.


Asunto(s)
Industria Farmacéutica , Motivación , Humanos , Preparaciones Farmacéuticas , Solubilidad , Estados Unidos , United States Food and Drug Administration
14.
Molecules ; 27(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268834

RESUMEN

There is an increase in the levels of volatile phenols in wine made with smoke-impacted grapes. These compounds are present in wood smoke resulting from the pyrolysis (thermal decomposition) of lignin and at high levels give overpowering smoky and ashy characters to a wine. This research aimed to compare all the suggested wine mitigation strategies that evolved from prior research using smoke-impacted grapes under identical winemaking conditions except for the parameter under investigation. Cabernet Sauvignon grapes were received from three areas with varying amounts of smoke exposure in Northern California. Gas chromatography combined with mass spectrometry (GC-MS) and descriptive analyses were performed to correlate the volatile phenol composition to smoke taint characteristics. The winemaking variables investigated were the use of different fermentation yeasts, oak additions, and fermentation temperatures. Among other attributes, smokiness and ashy aftertaste were significantly different among the wines, showing a clear difference between the wines made from smoke-impacted fruit and the control wines made from non-impacted fruit. Findings indicate that mitigation strategies during red wine fermentation have a limited impact on the extraction of smoke-taint markers and the expression of smoke-taint sensory characteristics.


Asunto(s)
Vino
15.
Epilepsy Res ; 181: 106892, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35220206

RESUMEN

Frontal lobe epilepsy (FLE) is the second most frequent type of epilepsy and the surgical outcome depends on the etiology. For instance, patients with posttraumatic FLE (PTE) have a worse surgical outcome compared to patients with FLE related to a tumoral lesion (TL). The present study focuses to determine if the FLE etiology is associated with the P-glycoprotein (P-gp) expression, a condition associated with drug resistance. P-gp expression and cellular localization were determined by Western Blot and immunohistochemical experiments in cortical brain samples obtained from patients with PTE (n = 5), TL (n = 5), and autopsies (n = 5). The neuronal count was estimated by Nissl and stereology procedure. Results showed that the autopsies tissue showed a neuronal count of 3514 ± 304.2 neurons per mm3. The P-gp expression ratio was 0.33 ± 0.02. Its expression was found in endothelial cells. Negligible P-gp expression was detected in neurons and astrocytes. Compared to the autopsies group, the TL group showed no changes in the neuronal count but, there was a decreased P-gp expression ratio (46%, p < 0.05). P-gp was located mainly in neurons, slight in astroglial, and endothelial cells. The PTE group showed a similar P-gp expression ratio compared to the autopsies group. P-gp was expressed in neurons, astrocytes, and endothelial cells in these samples. However, experiments revealed a high P-gp expression in a lower neuronal count (38%, p < 0.05 vs autopsy group). The present study reveals that patients with PTE present neuronal P-gp overexpression. This finding could underlie their worst surgical outcome.


Asunto(s)
Epilepsia del Lóbulo Frontal , Neocórtex , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Epilepsia del Lóbulo Frontal/cirugía , Lóbulo Frontal/patología , Humanos , Neocórtex/metabolismo , Neuronas/metabolismo
16.
Biomed Opt Express ; 13(1): 197-208, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35154864

RESUMEN

Biological tissue discrimination is relevant in guided surgery. Nerve identification is critical to avoid potentially severe collateral damage. Fluorescence imaging by oxazine 4-perchlorate (O4P) has been recently proposed. In this work, the cytotoxicity of O4P on U87 human-derived glioma cells has been investigated as a function of concentration and operating room irradiation modes. A custom-built optical irradiation device was employed for controlled optical dosimetry. DNA damage and O4P intracellular localization was also investigated by immunofluorescence and confocal microscopy. The results show that concentration below 100 µM can be considered safe. These results contribute to the assessment of the feasibility of O4P as a nerve biomarker.

17.
Epilepsia Open ; 7 Suppl 1: S81-S93, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34967149

RESUMEN

In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Anciano , Niño , Comorbilidad , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/epidemiología , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia/epidemiología , Femenino , Humanos , Masculino , Calidad de Vida/psicología , Convulsiones/diagnóstico , Adulto Joven
18.
Fertil Steril ; 117(1): 106-114, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34654569

RESUMEN

OBJECTIVE: To determine whether the use of slush nitrogen (SN), a super-cooled form of nitrogen with a temperature from -207 to -210 °C, can improve oocyte survival after vitrification and warming compared with conventional liquid nitrogen (LN). DESIGN: Randomized controlled trial. SETTING: Academic-affiliated private practice. PATIENT(S): A total of 556 metaphase II oocytes from 32 oocyte donor cycles were included. INTERVENTION(S): Donor oocytes were block randomized to undergo vitrification with either SN or LN. Vitrification was followed by warming, fertilization with donor sperm, embryo culture to the blastocyst stage, and preimplantation genetic testing for aneuploidy via trophectoderm biopsy with targeted next-generation sequencing. MAIN OUTCOME MEASURE(S): The primary outcome was oocyte survival after vitrification and warming. Secondary outcomes included rates of fertilization, usable blastocyst formation, and whole chromosome aneuploidy. RESULT(S): Half of the metaphase II oocytes (n = 278) were randomized to undergo vitrification with SN, whereas the other half (n = 278) were randomized to undergo vitrification with LN. There were no statistically significant differences noted in oocyte survival rate (85.3% vs. 86.3%), fertilization rate (84.0% vs. 80.0%), rate of usable blastocyst formation (54.3% vs. 55.7%), or rate of whole chromosome aneuploidy (9.4% vs. 11.7%) between the SN and LN arms, respectively. CONCLUSION(S): The implementation of an SN oocyte vitrification protocol resulted in similar embryology outcomes compared with LN. The use of SN did not lead to any demonstrable improvement in oocyte survival after vitrification and warming. CLINICAL TRIAL REGISTRATION NUMBER: NCT04342364.


Asunto(s)
Criopreservación/métodos , Desarrollo Embrionario/fisiología , Nitrógeno/química , Oocitos , Adulto , Aneuploidia , Desarrollo Embrionario/efectos de los fármacos , Femenino , Humanos , Recién Nacido , Masculino , Nitrógeno/farmacología , Donación de Oocito , Embarazo , Índice de Embarazo , Vitrificación , Adulto Joven
19.
Transl Psychiatry ; 11(1): 515, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625528

RESUMEN

Tryptophan hydroxylase type 2 (Tph2) is the rate-limiting enzyme for serotonin (5-HT) biosynthesis in the brain. Dysfunctional Tph2 alters 5-HT biosynthesis, leading to a deficiency of 5-HT, which could have repercussions on human behavior. In the last decade, several studies have associated polymorphisms of the TPH2 gene with suicidal behavior. Additionally, a 5-HT deficiency has been implicated in various psychiatric pathologies, including alcoholism, impulsive behavior, anxiety, and depression. Therefore, the TPH2 gene could be an ideal target for analyzing the effects of a 5-HT deficiency on brain function. The aim of this study was to use the construct pIRES-hrGFP-1a-Tph2-FLAG to treat CD1-male mice and to transfect HEK-293-cells and then to evaluate whether this treatment increases 5-HT production. 5-HT levels were enhanced 48 h post-transfection, in HEK-293 cells. Three days after the ocular administration of pIRES-hrGFP-1a-Tph2-FLAG to mice, putative 5-HT production was significantly higher than in the control in both hypothalamus and amygdala, but not in the brainstem. Further research will be needed on the possible application of this treatment for psychiatric diseases involving a Tph2 dysfunction or serotonin deficiency.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Animales , Ansiedad , Encéfalo/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Triptófano Hidroxilasa/genética
20.
Front Neurosci ; 15: 650219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349614

RESUMEN

Traditionally, neuropsychological testing has assessed processing speed and precision, closely related to the ability to perform high-order cognitive tasks. An individual making a decision under time pressure must constantly rebalance its speed to action in order to account for possible errors. A deficit in processing speed appears to be afrequent disorder caused by cerebral damage - but it can be hard to pinpoint the exact cause of the slowdown. It is therefore important to separate the perceptual-motor component of processing speed from the decision-time component. We present a technique to isolate Reaction Times (RTs): a short digital test to assess the decision-making abilities of individuals by gauging their ability to balance between speed and precision. Our hypothesis is that some subjects willaccelerate, and others slow down in the face of the difficulty. This pilot study, conducted on 83 neurotypical adult volunteers, used images stimuli. The test was designed to measure RTs and correctness. After learning release gesture, the subjects were presented with three tasks: a simple Reaction Time task, a Go/No-Go, and a complex Go/No-Go with 2 simultaneous Choices. All three tasks have in common a perceptual component and a motor response. By measuring the 3 reference points requiring attentional and executive processing, while progressively increasing the conceptual complexity of the task, we were able to compare the processing times for different tasks - thus calculating the deceleration specific to the reaction time linked to difficulty. We defined the difficulty coefficient of a task as being the ratio of the group average time of this task minus the base time/average time of the unit task minus the base time. We found that RTs can be broken down into three elementary, uncorrelated components: Reaction Time, Executive Speed, and Reaction to Difficulty (RD). We hypothesized that RD reflects how the subject reacts to difficulty by accelerating (RD < 0) or decelerating (RD > 0). Thus we provide here a first proof of concept: the ability to measure four axes of the speed-precision trade-off inherent in a subject's fundamental decision making: perceptual-motor speed, executive speed, subject accuracy, and reaction to difficulty.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...