Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 24(10): 1681-1693, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28622298

RESUMEN

Recent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells (ISCs) and tumour-initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-κB pathway can drive dedifferentiation of intestinal cells lacking Apc. To investigate this process further, we profiled both cells undergoing dedifferentiation in vitro and tumours generated from these cells in vivo by gene expression analysis. Remarkably, no clear differences were observed in the tumours; however, during dedifferentiation in vitro we found a marked upregulation of TGFß signalling, a pathway commonly mutated in colorectal cancer (CRC). Genetic inactivation of TGFß type 1 receptor (Tgfbr1/Alk5) enhanced the ability of KrasG12D/+ mutation to drive dedifferentiation and markedly accelerated tumourigenesis. Mechanistically this is associated with a marked activation of MAPK signalling. Tumourigenesis from differentiated compartments is potently inhibited by MEK inhibition. Taken together, we show that tumours arising in differentiated compartments will be exposed to different suppressive signals, for example, TGFß and blockade of these makes tumourigenesis more efficient from this compartment.


Asunto(s)
Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/genética , Sistema de Señalización de MAP Quinasas , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt/genética , Animales , Proliferación Celular/genética , Genes ras/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , FN-kappa B/metabolismo , Factor de Crecimiento Transformador beta/genética
2.
J Exp Med ; 214(3): 719-735, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28202494

RESUMEN

Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.


Asunto(s)
Fumarato Hidratasa/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Femenino , Fumaratos/metabolismo , Hematopoyesis , Histonas/metabolismo , Leucemia Mieloide Aguda/etiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Consumo de Oxígeno
3.
Blood ; 127(23): 2841-6, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27060169

RESUMEN

The hematopoietic stem cell (HSC) pool is maintained under hypoxic conditions within the bone marrow microenvironment. Cellular responses to hypoxia are largely mediated by the hypoxia-inducible factors, Hif-1 and Hif-2. The oxygen-regulated α subunits of Hif-1 and Hif-2 (namely, Hif-1α and Hif-2α) form dimers with their stably expressed ß subunits and control the transcription of downstream hypoxia-responsive genes to facilitate adaptation to low oxygen tension. An initial study concluded that Hif-1α is essential for HSC maintenance, whereby Hif-1α-deficient HSCs lost their ability to self-renew in serial transplantation assays. In another study, we demonstrated that Hif-2α is dispensable for cell-autonomous HSC maintenance, both under steady-state conditions and following transplantation. Given these unexpected findings, we set out to revisit the role of Hif-1α in cell-autonomous HSC functions. Here we demonstrate that inducible acute deletion of Hif-1α has no impact on HSC survival. Notably, unstressed HSCs lacking Hif-1α efficiently self-renew and sustain long-term multilineage hematopoiesis upon serial transplantation. Finally, Hif-1α-deficient HSCs recover normally after hematopoietic injury induced by serial administration of 5-fluorouracil. We therefore conclude that despite the hypoxic nature of the bone marrow microenvironment, Hif-1α is dispensable for cell-autonomous HSC maintenance.


Asunto(s)
Células Madre Adultas/fisiología , Proliferación Celular/genética , Células Madre Hematopoyéticas/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Madre Adultas/metabolismo , Animales , División Celular/genética , Células Cultivadas , Femenino , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
J Exp Med ; 212(13): 2223-34, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26642852

RESUMEN

Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Progresión de la Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Datos de Secuencia Molecular , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
5.
Stem Cells ; 33(3): 699-712, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25377420

RESUMEN

Identifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.


Asunto(s)
Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/biosíntesis , Células Madre Pluripotentes/fisiología , Proteínas Represoras/deficiencia , Transactivadores/deficiencia , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Transfección
6.
Blood ; 122(10): 1741-5, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23894152

RESUMEN

Local hypoxia in hematopoietic stem cell (HSC) niches is thought to regulate HSC functions. Hypoxia-inducible factor-1 (Hif-1) and Hif-2 are key mediators of cellular responses to hypoxia. Although oxygen-regulated α-subunits of Hifs, namely Hif-1α and Hif-2α, are closely related, they play overlapping and also distinct functions in nonhematopoietic tissues. Although Hif-1α-deficient HSCs lose their activity on serial transplantation, the role for Hif-2α in cell-autonomous HSC maintenance remains unknown. Here, we demonstrate that constitutive or inducible hematopoiesis-specific Hif-2α deletion does not affect HSC numbers and steady-state hematopoiesis. Furthermore, using serial transplantations and 5-fluorouracil treatment, we demonstrate that HSCs do not require Hif-2α to self-renew and recover after hematopoietic injury. Finally, we show that Hif-1α deletion has no major impact on steady-state maintenance of Hif-2α-deficient HSCs and their ability to repopulate primary recipients, indicating that Hif-1α expression does not account for normal behavior of Hif-2α-deficient HSCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Femenino , Eliminación de Gen , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...