Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(742): eadh8846, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598616

RESUMEN

Posttransplant lymphoproliferative disease (PTLD) is a major therapeutic challenge that has been difficult to study using human cells because of a lack of suitable models for mechanistic characterization. Here, we show that ex vivo-differentiated B cells isolated from a subset of healthy donors can elicit pathologies similar to PTLD when transferred into immunodeficient mice. The primary driver of PTLD-like pathologies were IgM-producing plasmablasts with Epstein-Barr virus (EBV) genomes that expressed genes commonly associated with EBV latency. We show that a small subset of EBV+ peripheral blood-derived B cells expressing self-reactive, nonmutated B cell receptors (BCRs) expand rapidly in culture in the absence of BCR stimulation. Furthermore, we found that in vitro and in vivo expansion of EBV+ plasmablasts required BCR signaling. Last, treatment of immunodeficient mice with the BCR pathway inhibitor, ibrutinib, delays onset of PTLD-like pathologies in vivo. These data have implications for the diagnosis and care of transplant recipients who are at risk of developing PTLD.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trastornos Linfoproliferativos , Humanos , Animales , Ratones , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4 , Trastornos Linfoproliferativos/terapia , Transducción de Señal , Linfocitos B
2.
Autophagy ; 19(3): 926-942, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36016494

RESUMEN

Macroautophagy/autophagy proteins have been linked with the development of immune-mediated diseases including lupus, but the mechanisms for this are unclear due to the complex roles of these proteins in multiple immune cell types. We have previously shown that a form of noncanonical autophagy induced by ITGAV/alpha(v) integrins regulates B cell activation by viral and self-antigens, in mice. Here, we investigate the involvement of this pathway in B cells from human tissues. Our data reveal that autophagy is specifically induced in the germinal center and memory B cell subpopulations of human tonsils and spleens. Transcriptomic analysis show that the induction of autophagy is related to unique aspects of activated B cells such as mitochondrial metabolism. To understand the function of ITGAV/alpha(v) integrin-dependent autophagy in human B cells, we used CRISPR-mediated knockdown of autophagy genes. Integrating data from primary B cells and knockout cells, we found that ITGAV/alpha(v)-dependent autophagy limits activation of specific pathways related to B cell responses, while promoting others. These data provide new mechanistic links for autophagy and B-cell-mediated immune dysregulation in diseases such as lupus.


Asunto(s)
Autofagia , Integrina alfaV , Humanos , Animales , Ratones , Integrina alfaV/genética , Integrina alfaV/metabolismo , Transcriptoma , Linfocitos B/metabolismo , Mitocondrias/metabolismo
3.
Nat Commun ; 13(1): 6110, 2022 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-36245034

RESUMEN

Due to their unique longevity and capacity to secrete high levels of protein, plasma B cells have the potential to be used as a cell therapy for protein replacement. Here, we show that ex vivo engineered human plasma cells exhibit single-cell RNA profiles, scanning electron micrograph ultrastructural features, and in vivo homing capacity of long-lived plasma cells. After transferring human plasma cells to immunodeficient mice in the presence of the human cytokines BAFF and IL-6, we observe increases in retention of plasma cells in the bone marrow, with engraftment exceeding a year. The most profound in vivo effects of human IL-6 are observed within 20 days of transfer and could be explained by decreased apoptosis in newly differentiated plasma cells. Collectively, these results show that ex vivo engineered and differentiated human plasma cells have the potential for long-lived in vivo protein secretion, which can be modeled in small animals.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Plasmáticas , Animales , Proteínas Sanguíneas , Citocinas/metabolismo , Humanos , Interleucina-6 , Ratones , Ratones SCID , Células Plasmáticas/metabolismo , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...