Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Solid State Nucl Magn Reson ; 133: 101959, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213800

RESUMEN

In this work, we elucidated the structural organization of stimuli-responsive peptide-polydiacetylene (PDA) conjugates that can self-assemble as 1D nanostructures under neutral aqueous conditions. The amino acid sequences bear positively or negatively charged domains at the periphery of the peptide segments to promote solubility in water while also driving assembly of the individual and combined components into ß-sheets. The photopolymerization of PDA, as well as the sensitivity of the resulting optical properties of the polymeric material to external stimuli, highly depends on the structural organization of the assembly of amphiphilic peptide-diacetylene units into 1D-nanostructures. Solid-state NMR measurements on 13C-labeled and 15N-labeled samples show that positively charged and negatively charged peptide amphiphiles are each capable of self-assembly, but self-assembly favors antiparallel ß-sheet structure. When positively and negatively charged peptide amphiphiles interact in stoichiometric solutions, cooperative coassembly dominates over self-assembly, resulting in the desired parallel ß-sheet structure with a concomitant increase in structural order. These results reveal that rational placement of oppositely charged residues can control ß-strand organization in a peptide amphiphile coassembly, which would have implications on the adaptive properties of stimuli-responsive biomaterials such as the peptide-PDAs studied here.


Asunto(s)
Péptidos , Polímero Poliacetilénico , Péptidos/química , Polímero Poliacetilénico/química , Conformación Proteica en Lámina beta , Tensoactivos/química , Espectroscopía de Resonancia Magnética , Poliinos/química , Polímeros/química , Nanoestructuras/química
2.
Protein Sci ; 33(8): e5102, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39037281

RESUMEN

Peptide self-assembly into amyloid fibrils provides numerous applications in drug delivery and biomedical engineering applications. We augment our previously-established computational screening technique along with experimental biophysical characterization to discover 7-mer peptides that self-assemble into "parallel ß-sheets", that is, ß-sheets with N-terminus-to-C-terminus 𝛽-strand vectors oriented in parallel. To accomplish the desired ß-strand organization, we applied the PepAD amino acid sequence design software to the Class-1 cross-ß spine defined by Sawaya et al. This molecular configuration includes two layers of parallel ß-sheets stacked such that N-terminus-to-C-terminus vectors are oriented antiparallel for molecules on adjacent ß-sheets. The first cohort of PepAD identified peptides were examined for their fibrillation behavior in DMD/PRIME20 simulations, and the top performing sequence was selected as a prototype for a subsequent round of sequence refinement. The two rounds of design resulted in a library of eight 7-mer peptides. In DMD/PRIME20 simulations, five of these peptides spontaneously formed fibril-like structures with a predominantly parallel 𝛽-sheet arrangement, two formed fibril-like structure with <50% in parallel 𝛽-sheet arrangement and one remained a random coil. Among the eight candidate peptides produced by PepAD and DMD/PRIME20, five were synthesized and purified. All five assembled into amyloid fibrils composed of parallel ß-sheets based on Fourier transform infrared spectroscopy, circular dichroism, electron microscopy, and thioflavin-T fluorescence spectroscopy measurements.


Asunto(s)
Método de Montecarlo , Conformación Proteica en Lámina beta , Nanofibras/química , Péptidos/química , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Amiloide/química , Modelos Moleculares , Simulación de Dinámica Molecular
3.
Nat Commun ; 15(1): 3264, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627405

RESUMEN

A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.


Asunto(s)
Peptoides , Peptoides/química , Aminoácidos
4.
Commun Biol ; 6(1): 1184, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989804

RESUMEN

Amyloid beta (Aß) aggregation is a slow process without seeding or assisted nucleation. Sodium dodecyl sulfate (SDS) micelles stabilize Aß42 small oligomers (in the dimer to tetramer range); subsequent SDS removal leads to a 150-kD Aß42 oligomer. Dodecylphosphorylcholine (DPC) micelles also stabilize an Aß42 tetramer. Here we investigate the detergent-assisted oligomerization pathway by solid-state NMR spectroscopy and molecular dynamics simulations. SDS- and DPC-induced oligomers have the same structure, implying a common oligomerization pathway. An antiparallel ß-sheet formed by the C-terminal region, the only stable structure in SDS and DPC micelles, is directly incorporated into the 150-kD oligomer. Three Gly residues (at positions 33, 37, and 38) create holes that are filled by the SDS and DPC hydrocarbon tails, thereby turning a potentially destabilizing feature into a stabilizing factor. These observations have implications for endogenous Aß aggregation at cellular interfaces.


Asunto(s)
Péptidos beta-Amiloides , Detergentes , Péptidos beta-Amiloides/metabolismo , Micelas , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...