Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2311470, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760007

RESUMEN

Layers of nanometer thick polydimethylsiloxane (PDMS) are applied as hydrophobic coatings because of their environmentally friendly and chemically inert properties. In applications such as heat exchangers or fog harvesting, low water drop friction on surfaces is required. While the onset of motion (static friction) has been studied, the knowledge of dynamic friction needs to be improved. To minimize drop friction, it is essential to understand which processes lead to energy dissipation and cause dynamic friction? Here, the dynamic friction of drops on PDMS brushes of different thicknesses is measured, covering the whole available velocity regime. The brush thickness L turns out to be a predictor for drop friction. 4-5 nm thick PDMS brush shows the lowest dynamic friction. A certain minimal thickness is necessary to form homogeneous surfaces and reduce the attractive van der Waals interaction between water and the substrate. The increase in dynamic friction above L = 5 nm is also attributed to the increasing viscoelastic dissipation of the capillary ridge formed at the contact line. The height of the ridge is related to the brush thickness. Fluorescence correlation spectroscopy and atomic force measurements support this interpretation. Sum-frequency generation further indicates a maximum order at the PDMS-water interface at intermediate thickness.

2.
Langmuir ; 39(30): 10367-10374, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466052

RESUMEN

Surface tension is a physical property that is central to our understanding of wetting phenomena. One could easily measure liquid surface tension using commercially available tensiometers (e.g., Wilhelmy plate method) or by optical imaging (e.g., pendant drop method). However, such instruments are designed for bulk liquid volumes on the order of milliliters. In order to perform similar measurements on extremely small sample volumes in the range of femtoliters, atomic force microscope (AFM) is considered as a promising tool. It was previously reported that by fabricating a special "nanoneedle"-shaped cantilever probe, a Wilhelmy-like experiment can be performed with AFM. By measuring the capillary force between such special probes and a liquid surface, surface tension could be calculated. Here, we carried out measurements on microscopic droplets with AFM, but instead, using standard pyramidal cantilever tips. The cantilevers were coated with a hydrophilic polyethylene glycol-based polymer brush in a simple one-step process, which reduced its contact angle hysteresis for most liquids. Numerical simulations of a liquid drop interacting with a pyramidal or conical geometry were used to calculate surface tension from the experimentally measured force. The results on micrometer-sized drops agree well with bulk tensiometer measurement of three test liquids (mineral oil, ionic liquid, and glycerol), within a maximum error of 10%. Our method eliminates the need for specially fabricated "nanoneedle" tips, thus reducing the complexity and cost of measurement.

3.
J Theor Biol ; 557: 111315, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332666

RESUMEN

Several creatures can climb on smooth surfaces with the help of hairy adhesive pads on their legs. A rapid change from strong attachment to effortless detachment of the leg is enabled by the asymmetric geometry of the tarsal hairs. In this study, we propose mechanisms by which the hairy pad can be easily detached, even when the hairs possess no asymmetry. Here, we examine the possible function of the tibia-tarsus leg joint and the claws. Based on a spring-based model, we consider three modes of detachment: vertically pulling the pad while maintaining either a (1) fixed or a (2) free joint, or by (3) flexing the pad about the claw. We show that in all cases, the adhesion force can be significantly reduced due to elastic forces when the hairs deform non-uniformly across the array. Our proposed model illustrates the design advantage of such fibrillar adhesive systems, that not only provide strong adhesion, but also allow easy detachment, making them suitable as organs for fast locomotion and reliable hold. The presented approaches can be potentially used to switch the adhesion state in bio-inspired fibrillar adhesives, by incorporating artificial joints and claws into their design, without the need of asymmetric or stimuli-responsive fibrillar structures.


Asunto(s)
Adhesivos , Citoesqueleto , Locomoción , Estaciones del Año , Tibia
4.
J Exp Biol ; 224(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34581416

RESUMEN

Many insects can climb smooth surfaces using hairy adhesive pads on their legs, mediated by tarsal fluid secretions. It was previously shown that a terrestrial beetle can even adhere and walk underwater. The naturally hydrophobic hairs trap an air bubble around the pads, allowing the hairs to make contact with the substrate as in air. However, it remained unclear to what extent such an air bubble is necessary for underwater adhesion. To investigate the role of the bubble, we measured the adhesive forces in individual legs of live but constrained ladybird beetles underwater in the presence and absence of a trapped bubble and compared these with its adhesion in air. Our experiments revealed that on a hydrophobic substrate, even without a bubble, the pads show adhesion comparable to that in air. On a hydrophilic substrate, underwater adhesion is significantly reduced, with or without a trapped bubble. We modelled the adhesion of a hairy pad using capillary forces. Coherent with our experiments, the model demonstrates that the wetting properties of the tarsal fluid alone can determine the ladybird beetles' adhesion to smooth surfaces in both air and underwater conditions and that an air bubble is not a prerequisite for their underwater adhesion. This study highlights how such a mediating fluid can serve as a potential strategy to achieve underwater adhesion via capillary forces, which could inspire artificial adhesives for underwater applications.


Asunto(s)
Adhesivos , Escarabajos , Adhesividad , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Insectos , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...