Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4144, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755140

RESUMEN

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers can be identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and is already studied using RNA-seq. In this study, we generate a large (325,025 cells and 49 patients) single cell multi-omic dataset and jointly quantify ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identify an association between one plasma cell subtype with myeloma progression that we call relapsed/refractory plasma cells (RRPCs). These cells are associated with chromosome 1q alterations, TP53 mutations, and higher expression of PHF19. We also identify downstream regulation of cell cycle inhibitors in these cells, possible regulation by the transcription factor (TF) PBX1 on chromosome 1q, and determine that PHF19 may be acting primarily through this subset of cells.


Asunto(s)
Cromosomas Humanos Par 1 , Proteínas de Unión al ADN , Mieloma Múltiple , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Humanos , Cromosomas Humanos Par 1/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Plasmáticas/metabolismo , Mutación , Recurrencia Local de Neoplasia/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Resistencia a Antineoplásicos/genética , Amplificación de Genes
2.
Blood Cancer J ; 13(1): 144, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696786

RESUMEN

Biallelic TP53 inactivation is the most important high-risk factor associated with poor survival in multiple myeloma. Classical biallelic TP53 inactivation has been defined as simultaneous mutation and copy number loss in most studies; however, numerous studies have demonstrated that other factors could lead to the inactivation of TP53. Here, we hypothesized that novel biallelic TP53 inactivated samples existed in the multiple myeloma population. A random forest regression model that exploited an expression signature of 16 differentially expressed genes between classical biallelic TP53 and TP53 wild-type samples was subsequently established and used to identify novel biallelic TP53 samples from monoallelic TP53 groups. The model reflected high accuracy and robust performance in newly diagnosed relapsed and refractory populations. Patient survival of classical and novel biallelic TP53 samples was consistently much worse than those with mono-allelic or wild-type TP53 status. We also demonstrated that some predicted biallelic TP53 samples simultaneously had copy number loss and aberrant splicing, resulting in overexpression of high-risk transcript variants, leading to biallelic inactivation. We discovered that splice site mutation and overexpression of the splicing factor MED18 were reasons for aberrant splicing. Taken together, our study unveiled the complex transcriptome of TP53, some of which might benefit future studies targeting abnormal TP53.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Alelos , Mutación , Factores de Empalme de ARN , Bosques Aleatorios , Proteína p53 Supresora de Tumor/genética , Factores de Transcripción
3.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645789

RESUMEN

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers have been identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and has already been studied using RNA-seq. In this study a massive (325,025 cells and 49 patients) single cell multiomic dataset was generated with jointly quantified ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identified an association between one plasma cell subtype with myeloma progression that we have called relapsed/refractory plasma cells (RRPCs). These cells are associated with 1q alterations, TP53 mutations, and higher expression of PHF19. We also identified downstream regulation of cell cycle inhibitors in these cells, possible regulation of the transcription factor (TF) PBX1 on 1q, and determined that PHF19 may be acting primarily through this subset of cells.

4.
Blood Cancer J ; 13(1): 16, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670103

RESUMEN

Alternative splicing plays a pivotal role in tumorigenesis and proliferation. However, its pattern and pathogenic role has not been systematically analyzed in multiple myeloma or its subtypes. Alternative splicing profiles for 598 newly diagnosed myeloma patients with comprehensive genomic annotation identified primary translocations, 1q amplification, and DIS3 events to have more differentially spliced events than those without. Splicing levels were correlated with expression of splicing factors. Moreover, the non-homologous end joining pathway was an independent factor that was highly associated with splicing frequency as well as an increased number of structural variants. We therefore identify an axis of high-risk disease encompassing expression of the non-homologous end joining pathway, increase structural variants, and increased alternative splicing that are linked together. This indicates a joint pathogenic role for DNA damage response and alternative RNA processing in myeloma.


Asunto(s)
Empalme Alternativo , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Translocación Genética
5.
Clin Cancer Res ; 28(13): 2854-2864, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522533

RESUMEN

PURPOSE: We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNA). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical FISH (translocations), multiplex ligation probe analysis (MLPA; CNAs), whole-genome sequencing (WGS; CNAs, mutations, translocations), or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS: Canonical immunoglobulin heavy chain translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for 1 patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2 = 0.969. Variant allele frequency (VAF) for 74 mutations were compared between sequencing and ddPCR with concordance of R2 = 0.9849. CONCLUSIONS: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost-effective, comprehensive, clinically actionable, and can be routinely deployed to assist risk stratification at diagnosis or posttreatment to guide sequencing of therapies.


Asunto(s)
Mieloma Múltiple , Variaciones en el Número de Copia de ADN , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Mutación , Translocación Genética , Secuenciación Completa del Genoma
6.
iScience ; 24(9): 102967, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34466790

RESUMEN

Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation. Postnatal YAP activation increased epithelial cell proliferation, increased AT1 cell numbers, and caused indeterminate differentiation of subsets of alveolar cells expressing atypical genes normally restricted to airway epithelial cells. YAP deletion increased expression of genes associated with mature AT2 cells. YAP activation enhanced DNA accessibility in promoters of transcription factors and motif enrichment analysis predicted target genes associated with alveolar cell differentiation. YAP participated with KLF5, NFIB, and NKX2-1 to regulate AGER. YAP plays a central role in a transcriptional network that regulates alveolar epithelial differentiation.

7.
Oncogene ; 40(12): 2182-2199, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627785

RESUMEN

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Factor de Transcripción PAX3/genética , Rabdomiosarcoma/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Desarrollo de Músculos/genética , Proteína MioD/genética , Miogenina/genética , Rabdomiosarcoma/patología
8.
Am J Respir Crit Care Med ; 202(10): 1373-1387, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32603599

RESUMEN

Rationale: Lymphangioleiomyomatosis (LAM) is a metastatic neoplasm of reproductive-age women associated with mutations in tuberous sclerosis complex genes. LAM causes cystic remodeling of the lung and progressive respiratory failure. The sources and cellular characteristics of LAM cells underlying disease pathogenesis remain elusive.Objectives: Identification and characterization of LAM cells in human lung and uterus using a single-cell approach.Methods: Single-cell and single-nuclei RNA sequencing on LAM (n = 4) and control (n = 7) lungs, immunofluorescence confocal microscopy, ELISA, and aptamer proteomics were used to identify and validate LAMCORE cells and secreted biomarkers, predict cellular origins, and define molecular and cellular networks in LAM.Measurements and Main Results: A unique cell type termed LAMCORE was identified, which was distinct from, but closely related to, lung mesenchymal cells. LAMCORE cells expressing signature genes included known LAM markers such as PMEL, FIGF, CTSK, and MLANA and novel biomarkers validated by aptamer screening, ELISA, and immunofluorescence microscopy. LAM cells in lung and uterus are morphologically indistinguishable and share similar gene expression profiles and biallelic TSC2 mutations, supporting a potential uterine origin for the LAMCORE cell. Effects of LAM on resident pulmonary cell types indicated recruitment and activation of lymphatic endothelial cells.Conclusions: A unique population of LAMCORE cells was identified in lung and uterus of patients with LAM, sharing close transcriptomic identity. LAM cell selective markers, secreted biomarkers, and the predicted cellular molecular features provide new insights into the signaling and transcriptional programs that may serve as diagnostic markers and therapeutic targets to influence the pathogenesis of LAM.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Linfangioleiomiomatosis/diagnóstico , Linfangioleiomiomatosis/genética , Transcriptoma/genética , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Análisis de la Célula Individual , Estados Unidos
9.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L239-L255, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32460513

RESUMEN

While antenatal glucocorticoids are widely used to enhance lung function in preterm infants, cellular and molecular mechanisms by which glucocorticoid receptor (GR) signaling influences lung maturation remain poorly understood. Deletion of the glucocorticoid receptor gene (Nr3c1) from fetal pulmonary mesenchymal cells phenocopied defects caused by global Nr3c1 deletion, while lung epithelial- or endothelial-specific Nr3c1 deletion did not impair lung function at birth. We integrated genome-wide gene expression profiling, ATAC-seq, and single cell RNA-seq data in mice in which GR was deleted or activated to identify the cellular and molecular mechanisms by which glucocorticoids control prenatal lung maturation. GR enhanced differentiation of a newly defined proliferative mesenchymal progenitor cell (PMP) into matrix fibroblasts (MFBs), in part by directly activating extracellular matrix-associated target genes, including Fn1, Col16a4, and Eln and by modulating VEGF, JAK-STAT, and WNT signaling. Loss of mesenchymal GR signaling blocked fibroblast progenitor differentiation into mature MFBs, which in turn increased proliferation of SOX9+ alveolar epithelial progenitor cells and inhibited differentiation of mature alveolar type II (AT2) and AT1 cells. GR signaling controls genes required for differentiation of a subset of proliferative mesenchymal progenitors into matrix fibroblasts, in turn, regulating signals controlling AT2/AT1 progenitor cell proliferation and differentiation and identifying cells and processes by which glucocorticoid signaling regulates fetal lung maturation.


Asunto(s)
Diferenciación Celular/fisiología , Glucocorticoides/metabolismo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Proliferación Celular/fisiología , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/fisiología
10.
Nat Commun ; 10(1): 37, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604742

RESUMEN

The respiratory system undergoes a diversity of structural, biochemical, and functional changes necessary for adaptation to air breathing at birth. To identify the heterogeneity of pulmonary cell types and dynamic changes in gene expression mediating adaptation to respiration, here we perform single cell RNA analyses of mouse lung on postnatal day 1. Using an iterative cell type identification strategy we unbiasedly identify the heterogeneity of murine pulmonary cell types. We identify distinct populations of epithelial, endothelial, mesenchymal, and immune cells, each containing distinct subpopulations. Furthermore we compare temporal changes in RNA expression patterns before and after birth to identify signaling pathways selectively activated in specific pulmonary cell types, including activation of cell stress and the unfolded protein response during perinatal adaptation of the lung. The present data provide a single cell view of the adaptation to air breathing after birth.


Asunto(s)
Adaptación Fisiológica/genética , Pulmón/citología , ARN/metabolismo , Fenómenos Fisiológicos Respiratorios , Análisis de la Célula Individual/métodos , Animales , Animales Recién Nacidos , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , ARN/aislamiento & purificación , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Análisis de Secuencia de ARN , Respuesta de Proteína Desplegada/fisiología
11.
Bioinformation ; 9(18): 941-3, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24307774

RESUMEN

UNLABELLED: Medicinal plants and plant derived molecules are widely used in traditional cultures all over the world and they are becoming large popular among biomedical researchers and pharmaceutical companies as a natural alternative to synthetic medicine. Information related to medicinal plants and herbal drugs accumulated over the ages are scattered and unstructured which make it prudent to develop a curated database for medicinal plants. The Antidiabetic and Anticancer Medicinal Plants Database (DIACAN) aims to collect and provide an integrated platform for plants and phytochemiclas having antidiabetic or anticancer activity. AVAILABILITY: http://www.kaubic.in/diacan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA