Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 381(6653): eadg4725, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410820

RESUMEN

In Trypanosoma brucei, the editosome, composed of RNA-editing substrate-binding complex (RESC) and RNA-editing catalytic complex (RECC), orchestrates guide RNA (gRNA)-programmed editing to recode cryptic mitochondrial transcripts into messenger RNAs (mRNAs). The mechanism of information transfer from gRNA to mRNA is unclear owing to a lack of high-resolution structures for these complexes. With cryo-electron microscopy and functional studies, we have captured gRNA-stabilizing RESC-A and gRNA-mRNA-binding RESC-B and RESC-C particles. RESC-A sequesters gRNA termini, thus promoting hairpin formation and blocking mRNA access. The conversion of RESC-A into RESC-B or -C unfolds gRNA and allows mRNA selection. The ensuing gRNA-mRNA duplex protrudes from RESC-B, likely exposing editing sites to RECC-catalyzed cleavage, uridine insertion or deletion, and ligation. Our work reveals a remodeling event facilitating gRNA-mRNA hybridization and assembly of a macromolecular substrate for the editosome's catalytic modality.


Asunto(s)
Edición de ARN , Estabilidad del ARN , ARN Guía de Kinetoplastida , ARN Mensajero , ARN Protozoario , Trypanosoma brucei brucei , Microscopía por Crioelectrón , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Guía de Kinetoplastida/química , ARN Mensajero/química , ARN Mensajero/genética , Trypanosoma brucei brucei/genética , ARN Protozoario/química , ARN Protozoario/genética
2.
Methods Enzymol ; 658: 83-109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34517961

RESUMEN

Unicellular parasite Trypanosoma brucei maintains an elaborate mitochondrial mRNA processing pathway including 3'-5' exonucleolytic trimming of primary precursors, 5' and 3' modifications, and, in most cases, massive U-insertion/deletion editing. Whereas the role of editing in restoring protein coding sequence is apparent, recent developments suggest that terminal modifications are equally critical for generating a stable translationally competent messenger. The enzymatic activities responsible for 5' pyrophosphate hydrolysis, 3' adenylation and uridylation, and 3'-5' decay are positively and negatively regulated by pentatricopeptide repeat-containing (PPR) proteins. These sequence-specific RNA binding factors typically contain arrays of 35-amino acid repeats each of which recognizes a single nucleotide. Here, we introduce a combinatorial CTS affinity tag, which underlies a suite of methods for PPR proteins purification, in vivo RNA binding sites mapping and sub-cellular localization studies. These approaches should be applicable to most trypanosomal RNA binding proteins.


Asunto(s)
Trypanosoma brucei brucei , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Edición de ARN , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
3.
Nucleic Acids Res ; 48(15): 8645-8662, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32614436

RESUMEN

In Trypanosoma brucei, mitochondrial pre-mRNAs undergo 3'-5' exonucleolytic processing, 3' adenylation and uridylation, 5' pyrophosphate removal, and, often, U-insertion/deletion editing. The 3' modifications are modulated by pentatricopeptide repeat (PPR) Kinetoplast Polyadenylation Factors (KPAFs). We have shown that KPAF3 binding to the 3' region stabilizes properly trimmed transcripts and stimulates their A-tailing by KPAP1 poly(A) polymerase. Conversely, poly(A) binding KPAF4 shields the nascent A-tail from uridylation and decay thereby protecting pre-mRNA upon KPAF3 displacement by editing. While editing concludes in the 5' region, KPAF1/2 dimer induces A/U-tailing to activate translation. Remarkably, 5' end recognition and pyrophosphate hydrolysis by the PPsome complex also contribute to mRNA stabilization. Here, we demonstrate that KPAF4 functions as a heterodimer with KPAF5, a protein lacking discernable motifs. We show that KPAF5 stabilizes KPAF4 to enable poly(A) tail recognition, which likely leads to mRNA stabilization during the editing process and impedes spontaneous translational activation of partially-edited transcripts. Thus, KPAF4/5 represents a poly(A) binding element of the mitochondrial polyadenylation complex. We present evidence that RNA editing substrate binding complex bridges the 5' end-bound PPsome and 3' end-bound polyadenylation complexes. This interaction may enable mRNA circularization, an apparently critical element of mitochondrial mRNA stability and quality control.


Asunto(s)
Polinucleotido Adenililtransferasa/genética , Proteínas Protozoarias/genética , ARN Protozoario/genética , Trypanosoma brucei brucei/genética , Mitocondrias/genética , Poliadenilación/genética , Proteínas Protozoarias/química , Edición de ARN/genética , Precursores del ARN/genética , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Protozoario/química , Factores de Escisión y Poliadenilación de ARNm/genética
4.
Nat Commun ; 10(1): 146, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635574

RESUMEN

In Trypanosoma brucei, most mitochondrial mRNAs undergo editing, and 3' adenylation and uridylation. The internal sequence changes and terminal extensions are coordinated: pre-editing addition of the short (A) tail protects the edited transcript against 3'-5' degradation, while post-editing A/U-tailing renders mRNA competent for translation. Participation of a poly(A) binding protein (PABP) in coupling of editing and 3' modification processes has been inferred, but its identity and mechanism of action remained elusive. We report identification of KPAF4, a pentatricopeptide repeat-containing PABP which sequesters the A-tail and impedes mRNA degradation. Conversely, KPAF4 inhibits uridylation of A-tailed transcripts and, therefore, premature A/U-tailing of partially-edited mRNAs. This quality check point likely prevents translation of incompletely edited mRNAs. We also find that RNA editing substrate binding complex (RESC) mediates the interaction between the 5' end-bound pyrophosphohydrolase MERS1 and 3' end-associated KPAF4 to enable mRNA circularization. This event appears to be critical for edited mRNA stability.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Edición de ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mitocondrial/genética , ARN Protozoario/genética , Trypanosoma brucei brucei/genética , Mitocondrias/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
5.
Proc Natl Acad Sci U S A ; 115(44): E10323-E10332, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30333188

RESUMEN

Mitochondrial genomes are often transcribed into polycistronic RNAs punctuated by tRNAs whose excision defines mature RNA boundaries. Although kinetoplast DNA lacks tRNA genes, it is commonly held that in Trypanosoma brucei the monophosphorylated 5' ends of functional molecules typify precursor partitioning by an unknown endonuclease. On the contrary, we demonstrate that individual mRNAs and rRNAs are independently synthesized as 3'-extended precursors. The transcription-defined 5' terminus is converted into a monophosphorylated state by the pyrophosphohydrolase complex, termed the "PPsome." Composed of the MERS1 NUDIX enzyme, the MERS2 pentatricopeptide repeat RNA-binding subunit, and MERS3 polypeptide, the PPsome binds to specific sequences near mRNA 5' termini. Most guide RNAs lack PPsome-recognition sites and remain triphosphorylated. The RNA-editing substrate-binding complex stimulates MERS1 pyrophosphohydrolase activity and enables an interaction between the PPsome and the polyadenylation machinery. We provide evidence that both 5' pyrophosphate removal and 3' adenylation are essential for mRNA stabilization. Furthermore, we uncover a mechanism by which antisense RNA-controlled 3'-5' exonucleolytic trimming defines the mRNA 3' end before adenylation. We conclude that mitochondrial mRNAs and rRNAs are transcribed and processed as insulated units irrespective of their genomic location.


Asunto(s)
ARN Protozoario/genética , Transcripción Genética/genética , Trypanosoma brucei brucei/genética , ADN de Cinetoplasto , Mitocondrias/genética , Poliadenilación/genética , Proteínas Protozoarias/genética , Edición de ARN/genética , ARN sin Sentido/genética
6.
EMBO J ; 36(16): 2435-2454, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28684539

RESUMEN

In Trypanosoma brucei, most mitochondrial mRNAs undergo internal changes by RNA editing and 3' end modifications. The temporally separated and functionally distinct modifications are manifested by adenylation prior to editing, and by post-editing extension of a short A-tail into a long A/U-heteropolymer. The A-tail stabilizes partially and fully edited mRNAs, while the A/U-tail enables mRNA binding to the ribosome. Here, we identify an essential pentatricopeptide repeat-containing RNA binding protein, kinetoplast polyadenylation factor 3 (KPAF3), and demonstrate its role in protecting pre-mRNA against degradation by the processome. We show that KPAF3 recruits KPAP1 poly(A) polymerase to the 3' terminus, thus leading to pre-mRNA stabilization, or decay depending on the occurrence and extent of editing. In vitro, KPAF3 stimulates KPAP1 activity and inhibits mRNA uridylation by RET1 TUTase. Our findings indicate that KPAF3 selectively directs pre-mRNA toward adenylation rather than uridylation, which is a default post-trimming modification characteristic of ribosomal and guide RNAs. As a quality control mechanism, KPAF3 binding ensures that mRNAs entering the editing pathway are adenylated and, therefore, competent for post-editing A/U-tailing and translational activation.


Asunto(s)
Proteínas Protozoarias/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/metabolismo , Mitocondrias/metabolismo , Poliadenilación , Trypanosoma brucei brucei/citología
7.
Biochem J ; 474(6): 957-969, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28130490

RESUMEN

Translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to ribosomes in protein synthesis. EF-Tu generally recognizes aminoacyl moieties and acceptor- and T-stems of aa-tRNAs. However, nematode mitochondrial (mt) tRNAs frequently lack all or part of the T-arm that is recognized by canonical EF-Tu. We previously reported that two distinct EF-Tu species, EF-Tu1 and EF-Tu2, respectively, recognize mt tRNAs lacking T-arms and D-arms in the mitochondria of the chromadorean nematode Caenorhabditis elegansC. elegans EF-Tu2 specifically recognizes the seryl moiety of serylated D-armless tRNAs. Mitochondria of the enoplean nematode Trichinella possess three structural types of tRNAs: T-armless tRNAs, D-armless tRNAs, and cloverleaf tRNAs with a short T-arm. Trichinella mt EF-Tu1 binds to all three types and EF-Tu2 binds only to D-armless Ser-tRNAs, showing an evolutionary intermediate state from canonical EF-Tu to chromadorean nematode (e.g. C. elegans) EF-Tu species. We report here that two EF-Tu species also participate in Drosophila melanogaster mitochondria. Both D. melanogaster EF-Tu1 and EF-Tu2 bound to cloverleaf and D-armless tRNAs. D. melanogaster EF-Tu1 has the ability to recognize T-armless tRNAs that do not evidently exist in D. melanogaster mitochondria, but do exist in related arthropod species. In addition, D. melanogaster EF-Tu2 preferentially bound to aa-tRNAs carrying small amino acids, but not to aa-tRNAs carrying bulky amino acids. These results suggest that the Drosophila mt translation system could be another intermediate state between the canonical and nematode mitochondria-type translation systems.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteínas Mitocondriales/química , Factor Tu de Elongación Peptídica/química , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/química , Secuencia de Aminoácidos , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Clonación Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Cinética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Trichinella/genética , Trichinella/metabolismo
8.
RNA Biol ; 13(11): 1078-1083, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27715485

RESUMEN

RNA uridylation is a significant transcriptome-shaping factor in protists, fungi, metazoans, and plants. The 3' U-additions are catalyzed by terminal uridyltransferases (TUTases), a diverse group of enzymes that along with non-canonical poly(A) polymerases form a distinct group in the superfamily of DNA polymerase ß-like nucleotidyl transferases. Within and across studied organisms and subcellular compartments, TUTases differ in nucleotide triphosphate selectivity, interacting partners, and RNA targets. A general premise linking RNA uridylation to 3'-5' degradation received support from several studies of small RNAs and mRNA turnover. However, recent work on kinetoplastid protists typified by Trypanosoma brucei provides evidence that RNA uridylation may play a more nuanced role in generating functional small RNAs. In this pathogen's mitochondrion, most mRNAs are internally edited by U-insertions and deletions, and subjected to 3' adenylation/uridylation; guide RNAs (gRNAs) required for editing are U-tailed. The prominent role of uridylation in mitochondrial RNA metabolism stimulated identification of the first TUTase, RNA editing TUTase 1 (RET1). Here we discuss functional studies of mitochondrial uridylation in trypanosomes that have revealed an unorthodox pathway of small RNA biogenesis. The current model accentuates physical coupling of RET1 and 3'-5' RNase II/RNB-type exonuclease DSS1 within a stable complex termed the mitochondrial 3' processome (MPsome). In the confines of this complex, RET1 initially uridylates a long precursor to activate its 3'-5' degradation by DSS1, and then uridylates trimmed guide RNA to disengage the processing complex from the mature molecule. We also discuss a potential role of antisense transcription in the MPsome pausing at a fixed distance from gRNA's 5' end. This step likely defines the mature 3' end by enabling kinetic competition between TUTase and exonuclease activities.


Asunto(s)
ARN Mensajero/química , ARN Pequeño no Traducido/metabolismo , Trypanosoma/genética , Uridina/metabolismo , Exonucleasas/metabolismo , Mitocondrias/genética , Proteínas Protozoarias/metabolismo , Edición de ARN , ARN Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , ARN Guía de Kinetoplastida/genética , ARN Protozoario/química , ARN Protozoario/metabolismo
9.
Nucleic Acids Res ; 44(22): 10862-10878, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27744351

RESUMEN

Terminal uridyltransferases (TUTases) execute 3' RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3' processome in uridylation of gRNA precursors and mature guide RNAs. Along with KPAP1 poly(A) polymerase, RET1 also participates in mRNA translational activation. RET1 is divergent from human TUTases and is essential for parasite viability in the mammalian host and the insect vector. Given its robust in vitro activity, RET1 represents an attractive target for trypanocide development. Here, we report high-resolution crystal structures of the RET1 catalytic core alone and in complex with UTP analogs. These structures reveal a tight docking of the conserved nucleotidyl transferase bi-domain module with a RET1-specific C2H2 zinc finger and RNA recognition (RRM) domains. Furthermore, we define RET1 region required for incorporation into the 3' processome, determinants for RNA binding, subunit oligomerization and processive UTP incorporation, and predict druggable pockets.


Asunto(s)
Proteína Coatómero/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Enlace de Hidrógeno , Cinética , Leishmania/enzimología , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Edición de ARN , Especificidad por Sustrato , Tripanocidas/química
10.
Mol Cell ; 61(3): 364-378, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833087

RESUMEN

Small, noncoding RNA biogenesis typically involves cleavage of structured precursor by RNase III-like endonucleases. However, guide RNAs (gRNAs) that direct U-insertion/deletion mRNA editing in mitochondria of trypanosomes maintain 5' triphosphate characteristic of the transcription initiation and possess a U-tail indicative of 3' processing and uridylation. Here, we identified a protein complex composed of RET1 TUTase, DSS1 3'-5' exonuclease, and three additional subunits. This complex, termed mitochondrial 3' processome (MPsome), is responsible for primary uridylation of ∼800 nt gRNA precursors, their processive degradation to a mature size of 40-60 nt, and secondary U-tail addition. Both strands of the gRNA gene are transcribed into sense and antisense precursors of similar lengths. Head-to-head hybridization of these transcripts blocks symmetrical 3'-5' degradation at a fixed distance from the double-stranded region. Together, our findings suggest a model in which gRNA is derived from the 5' extremity of a primary molecule by uridylation-induced, antisense transcription-controlled 3'-5' exonucleolytic degradation.


Asunto(s)
Exorribonucleasas/metabolismo , Mitocondrias/metabolismo , Edición de ARN , ARN sin Sentido/metabolismo , ARN Guía de Kinetoplastida/biosíntesis , ARN Protozoario/biosíntesis , ARN/biosíntesis , Trypanosoma brucei brucei/metabolismo , Exorribonucleasas/genética , Regulación de la Expresión Génica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN/genética , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , ARN sin Sentido/genética , ARN Guía de Kinetoplastida/genética , ARN Mitocondrial , ARN Protozoario/genética , Factores de Tiempo , Trypanosoma brucei brucei/genética , Nucleótidos de Uracilo/metabolismo
11.
Front Genet ; 5: 109, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24822055

RESUMEN

Conventional tRNAs have highly conserved sequences, four-armed cloverleaf secondary structures, and L-shaped tertiary structures. However, metazoan mitochondrial tRNAs contain several exceptional structures. Almost all tRNAs(Ser) for AGY/N codons lack the D-arm. Furthermore, in some nematodes, no four-armed cloverleaf-type tRNAs are present: two tRNAs(Ser) without the D-arm and 20 tRNAs without the T-arm are found. Previously, we showed that in nematode mitochondria, an extra elongation factor Tu (EF-Tu) has evolved to support interaction with tRNAs lacking the T-arm, which interact with C-terminal domain 3 in conventional EF-Tu. Recent mitochondrial genome analyses have suggested that in metazoan lineages other than nematodes, tRNAs without the T-arm are present. Furthermore, even more simplified tRNAs are predicted in some lineages. In this review, we discuss mitochondrial tRNAs with divergent structures, as well as protein factors, including EF-Tu, that support the function of truncated metazoan mitochondrial tRNAs.

12.
J Biochem ; 155(2): 107-14, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24272752

RESUMEN

Translation elongation factor G (EF-G) in bacteria catalyses the translocation of transfer RNA on ribosomes in the elongation step as well as dissociation of post-termination state ribosomes into two subunits in the recycling step. In contrast, the dual functions of EF-G are exclusively divided into two different paralogues in human mitochondria, named EF-G1mt for translocation and EF-G2mt for ribosomal dissociation. Many of the two eukaryotic EF-G paralogues are phylogenetically associated with EF-G1mt and EF-G2mt groups. However, plant paralogues are associated with EF-G1mt and plastid EF-G, not with EF-G2mt. In this study, we phylogenetically and biochemically characterized Arabidopsis thaliana EF-G1mt (AtEF-G1mt) to clarify the factor responsible for the dissociation of ribosomes in plant mitochondria. We showed that eukaryotic EF-G1mts form one monophyletic group separated from bacterial EF-G and are classified into five sister groups. AtEF-G1mt is classified into a different group from its human counterpart. We also demonstrated that AtEF-G1mt catalyses both translocation and ribosomal dissociation, unlike in humans. Meanwhile, AtEF-G1mt is resistant to fusidic acid, an inhibitor of bacterial EF-G. Here, we propose that the functional division is not necessarily conserved among mitochondriate eukaryotes and also that EF-G1mt in organisms lacking EF-G2mt functions in two steps, similar to conventional bacterial EF-G.


Asunto(s)
Arabidopsis/metabolismo , Mitocondrias/metabolismo , Factor G de Elongación Peptídica/fisiología , Biosíntesis de Proteínas , Arabidopsis/clasificación , Arabidopsis/genética , Evolución Molecular , Ácido Fusídico/farmacología , GTP Fosfohidrolasas/efectos de los fármacos , Humanos , Filogenia , Inhibidores de la Síntesis de la Proteína/farmacología
13.
Mol Microbiol ; 75(6): 1445-54, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20132446

RESUMEN

Translation elongation factor G (EF-G) in bacteria plays two distinct roles in different phases of the translation system. EF-G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post-termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF-G are distributed over two different EF-G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF-G is also found in bacteria. Two EF-G paralogues are found in the spirochaete Borrelia burgdorferi, EF-G1 and EF-G2. We demonstrate that EF-G1 is a translocase, while EF-G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF-G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF-3) is present in the reaction. These results indicate that two B. burgdorferi EF-G paralogues are close relatives to mitochondrial EF-G paralogues rather than the conventional bacterial EF-G, in both their phylogenetic and biochemical features.


Asunto(s)
Borrelia burgdorferi/enzimología , Borrelia burgdorferi/metabolismo , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Guanosina Trifosfato/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Factor 3 Procariótico de Iniciación/metabolismo , Proteínas Ribosómicas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
14.
Nucleic Acids Res ; 34(18): 5291-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17012285

RESUMEN

EF-Tu delivers aminoacyl-tRNAs to ribosomes in the translation system. However, unusual truncations found in some animal mitochondrial tRNAs seem to prevent recognition by a canonical EF-Tu. We showed previously that the chromadorean nematode has two distinct EF-Tus, one of which (EF-Tu1) binds only to T-armless aminoacyl-tRNAs and the other (EF-Tu2) binds to D-armless Ser-tRNAs. Neither of the EF-Tus can bind to canonical cloverleaf tRNAs. In this study, by analyzing the translation system of enoplean nematode Trichinella species, we address how EF-Tus and tRNAs have evolved from the canonical structures toward those of the chromadorean translation system. Trichinella mitochondria possess three types of tRNAs: cloverleaf tRNAs, which do not exist in chromadorean nematode mitochondria; T-armless tRNAs; and D-armless tRNAs. We found two mitochondrial EF-Tu species, EF-Tu1 and EF-Tu2, in Trichinella britovi. T.britovi EF-Tu2 could bind to only D-armless Ser-tRNA, as Caenorhabditis elegans EF-Tu2 does. In contrast to the case of C.elegans EF-Tu1, however, T.britovi EF-Tu1 bound to all three types of tRNA present in Trichinella mitochondria. These results suggest that Trichinella mitochondrial translation system, and particularly the tRNA-binding specificity of EF-Tu1, could be an intermediate state between the canonical system and the chromadorean nematode mitochondrial system.


Asunto(s)
Evolución Molecular , Mitocondrias/genética , Factor Tu de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN de Transferencia/química , Trichinella/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Caenorhabditis elegans/química , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , ARN/química , ARN/metabolismo , ARN de Helminto/química , ARN de Helminto/metabolismo , ARN Mitocondrial , ARN de Transferencia/metabolismo , ARN de Transferencia de Alanina/química , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Serina/química , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Triptófano/química , ARN de Transferencia de Triptófano/metabolismo , Alineación de Secuencia
15.
Nucleic Acids Res ; 33(15): 4683-91, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16113240

RESUMEN

Nematode mitochondria expresses two types of extremely truncated tRNAs that are specifically recognized by two distinct elongation factor Tu (EF-Tu) species named EF-Tu1 and EF-Tu2. This is unlike the canonical EF-Tu molecule that participates in the standard protein biosynthesis systems, which basically recognizes all elongator tRNAs. EF-Tu2 specifically recognizes Ser-tRNA(Ser) that lacks a D arm but has a short T arm. Our previous study led us to speculate the lack of the D arm may be essential for the tRNA recognition of EF-Tu2. However, here, we showed that the EF-Tu2 can bind to D arm-bearing Ser-tRNAs, in which the D-T arm interaction was weakened by the mutations. The ethylnitrosourea-modification interference assay showed that EF-Tu2 is unique, in that it interacts with the phosphate groups on the T stem on the side that is opposite to where canonical EF-Tu binds. The hydrolysis protection assay using several EF-Tu2 mutants then strongly suggests that seven C-terminal amino acid residues of EF-Tu2 are essential for its aminoacyl-tRNA-binding activity. Our results indicate that the formation of the nematode mitochondrial (mt) EF-Tu2/GTP/aminoacyl-tRNA ternary complex is probably supported by a unique interaction between the C-terminal extension of EF-Tu2 and the tRNA.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Proteínas Mitocondriales/química , Factor Tu de Elongación Peptídica/química , Factores de Elongación de Péptidos/química , Aminoacil-ARN de Transferencia/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Aminoacil-ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA