Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 20: 645-652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533471

RESUMEN

Polycavernoside E (1), a new polycavernoside analog, was isolated from a marine Okeania sp. cyanobacterium. The relative configuration was elucidated primarily by analyzing the two dimensional nuclear magnetism resonance (2D NMR) data. The absolute configuration was clarified by comparing the electronic circular dichroism (ECD) data of 1 with those of known analogs. Polycavernoside E (1) exhibited moderate antitrypanosomal activity against Trypanosoma brucei rhodesiense. Furthermore, the isolation of polycavernoside E (1) from marine cyanobacteria provides additional evidence that marine cyanobacteria, and not red algae, are responsible for the biosynthesis of polycavernosides.

2.
J Nat Prod ; 87(4): 1116-1123, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38381613

RESUMEN

Kagimminols A (1) and B (2), new cembrene-type diterpenoids, were isolated from an Okeania sp. marine cyanobacterium. By combining DP4 analysis with an efficient NMR chemical shift calculation protocol, we clarified the relative configurations of 1 and 2 without consuming precious natural products. We determined the absolute configurations by a comparison of theoretical electronic circular dichroism (ECD) spectra with experimental spectra, and the absolute configuration of 1 was verified experimentally. Finally, we found that 1 and 2 showed selective growth-inhibitory activity against the causative agent of human African trypanosomiasis. This study exemplifies that computational chemistry is an efficient tool for clarifying the configurations of natural products possessing tautomers in equilibrium.


Asunto(s)
Cianobacterias , Diterpenos , Humanos , Dicroismo Circular , Cianobacterias/química , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
3.
J Nat Prod ; 86(11): 2529-2538, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37945375

RESUMEN

Akunolides A (1), B (2), C (3), and D (4), new macrolide glycosides, were isolated from a marine Okeania sp. cyanobacterium. Their structures were elucidated by spectroscopic analyses and derivatization reactions. Akunolides A-D (1-4) are classified as 16-membered macrolide glycosides, which are relatively rare structures for marine cyanobacterium-derived natural products. Akunolides A-D (1-4) showed moderate antitrypanosomal activities against Trypanosoma brucei rhodesiense, with IC50 values ranging from 11 to 14 µM. Furthermore, akunolides A (1) and C (3) exhibited no cytotoxicity against normal human WI-38 cells even at a concentration of 150 µM.


Asunto(s)
Cianobacterias , Macrólidos , Humanos , Macrólidos/química , Glicósidos/química , Cianobacterias/química , Línea Celular , Estructura Molecular
4.
Antimicrob Agents Chemother ; 67(11): e0056023, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37874291

RESUMEN

Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.


Asunto(s)
Amebiasis , Entamoeba histolytica , Parásitos , Animales , Humanos , Entamoeba histolytica/genética , Amebiasis/tratamiento farmacológico , Poliésteres
5.
J Org Chem ; 88(15): 10565-10573, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37460389

RESUMEN

Ikoamide (1) is a highly N-methylated antimalarial lipopeptide that was isolated from a marine cyanobacterium, an Okeania sp. in 2018, which shows strong antimalarial activity without cytotoxicity against human cancer cell lines. To establish a synthetic method for obtaining enough ikoamide for its biological evaluations, we have established a total synthesis of ikoamide. The synthetic method presented here lays the foundation for the development of novel ikoamide analogues, which may lead to a discovery of pharmaceutically unique antimalarial drug leads.


Asunto(s)
Antimaláricos , Cianobacterias , Humanos , Antimaláricos/farmacología , Lipopéptidos , Células HeLa
6.
J Nat Prod ; 86(6): 1564-1570, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37307100

RESUMEN

The linear lipopeptides okeaniamide A (1) and okeaniamide B (2) were isolated from an Okeania sp. marine cyanobacterium collected in Okinawa. The structures of these compounds were established by spectroscopic analyses, and the absolute configurations were elucidated based on a combination of chemical degradations, Marfey's analysis, and derivatization reactions. Okeaniamide A (1) and okeaniamide B (2) dose-dependently promoted the differentiation of mouse 3T3-L1 preadipocytes in the presence of insulin.


Asunto(s)
Cianobacterias , Biología Marina , Ratones , Animales , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Cianobacterias/química , Lipopéptidos/química
7.
Org Lett ; 25(14): 2400-2404, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37011050

RESUMEN

Two new natural products were isolated from the marine cyanobacterium Rivularia sp. collected in Japan. Hennaminal possesses a very rare functional group, ß,ß-diamino unsaturated ketone, which has only been found in bohemamine-type natural products so far. Hennamide possesses a reactive N-acyl pyrrolinone moiety, which induces self-dimerization. The isolation and structure determination supported by computational chemistry and total synthesis, as well as the antitrypanosomal activities of hennaminal and hennamide are described.


Asunto(s)
Productos Biológicos , Cianobacterias , Cianobacterias/química , Dimerización , Estructura Molecular
8.
Plants (Basel) ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050203

RESUMEN

Polygonum chinense Linn. is a medicinal and invasive plant that belongs to the family Polygonaceae. The pharmacological activities and phytochemical constituents of Polygonum chinense are well reported, but the allelopathic effects and potent allelopathic substances of P. chinense remain to be investigated. Hence, this experiment was conducted to separate and characterize potentially allelopathic substances from an extract of the Polygonum chinense plant. The Polygonum chinense plant extracts highly suppressed the growth of cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), barnyard grass (Echinochloa crusgalli (L.) P. Beauv.), and timothy grass (Phleum pratense L.) seedlings in a species- and concentration-dependent way. Two active substances were separated using a series of purification procedures and determined through spectral analysis as (-)-3-hydroxy-ß-ionone and (-)-3-hydroxy-7,8-dihydro-ß-ionone. These two compounds significantly suppressed the seedling growth of Lepidium sativum (cress) at concentrations of 0.01 and 1 mM, respectively. The extract concentrations necessary for 50% growth inhibition (I50 values) of the cress hypocotyls and roots were 0.05 and 0.07 mM for (-)-3-hydroxy-ß-ionone, respectively, and 0.42 and 1.29 mM for (-)-3-hydroxy-7,8-ß-ionone, respectively. These findings suggest that these two compounds are in charge of the inhibitory effects of the Polygonum chinense extract and may serve as weed control agents.

9.
Plants (Basel) ; 12(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37111887

RESUMEN

Plant parts and extracts that are rich in bioactive substances with allelopathic potential can be explored as a possible alternative to herbicides for natural weed control in sustainable agriculture. In the present study, we investigated the allelopathic potential of Marsdenia tenacissima leaves and its active substances. Aqueous methanol extracts of M. tenacissima showed significant inhibitory activities against the growth of lettuce (Lactuca sativa L.), alfalfa (Medicago sativa L.), timothy (Phleum pratense L.), and barnyard grass (Echinochloa crusgalli (L.) Beauv.). The extracts were purified through various chromatography steps, and one active substance was isolated and determined by spectral data to be a novel compound, assigned as steroidal glycoside 3 (8-dehydroxy-11ß-O-acetyl-12ß-O-tigloyl-17ß-marsdenin). Steroidal glycoside 3 significantly inhibited the seedling growth of cress at a concentration of 0.03 mM. The concentrations needed for 50% growth inhibition of the cress shoots and roots were 0.25 and 0.03 mM, respectively. These results suggest that steroidal glycoside 3 may be responsible for the allelopathy of M. tenacissima leaves.

10.
ACS Chem Biol ; 18(4): 875-883, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36921345

RESUMEN

Lyngbyapeptin B is a hybrid polyketide-nonribosomal peptide isolated from particular marine cyanobacteria. In this report, we carried out genome sequence analysis of a producer cyanobacterium Moorena bouillonii to understand the biosynthetic mechanisms that generate the unique structural features of lyngbyapeptin B, including the (E)-3-methoxy-2-butenoyl starter unit and the C-terminal thiazole moiety. We identified a putative lyngbyapeptin B biosynthetic (lynB) gene cluster comprising nine open reading frames that include two polyketide synthases (PKSs: LynB1 and LynB2), four nonribosomal peptide synthetases (NRPSs: LynB3, LynB4, LynB5, and LynB6), a putative nonheme diiron oxygenase (LynB7), a type II thioesterase (LynB8), and a hypothetical protein (LynB9). In vitro enzymatic analysis of LynB2 with methyltransferase (MT) and acyl carrier protein (ACP) domains revealed that the LynB2 MT domain (LynB2-MT) catalyzes O-methylation of the acetoacetyl-LynB2 ACP domain (LynB2-ACP) to yield (E)-3-methoxy-2-butenoyl-LynB2-ACP. In addition, in vitro enzymatic analysis of LynB7 revealed that LynB7 catalyzes the oxidative decarboxylation of (4R)-2-methyl-2-thiazoline-4-carboxylic acid to yield 2-methylthiazole in the presence of Fe2+ and molecular oxygen. This result indicates that LynB7 is responsible for the last post-NRPS modification to give the C-terminal thiazole moiety in lyngbyapeptin B biosynthesis. Overall, we identified and characterized a new marine cyanobacterial hybrid PKS-NRPS biosynthetic gene cluster for lyngbyapeptin B production, revealing two unique enzymatic logics.


Asunto(s)
Cianobacterias , Péptidos , Policétidos , Cianobacterias/química , Cianobacterias/genética , Cianobacterias/metabolismo , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/química , Tiazoles/metabolismo
11.
J Org Chem ; 88(5): 3208-3216, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800251

RESUMEN

Caldorazole (1) is a novel polyketide that was isolated from a marine cyanobacterium in 2022. It is a unique natural product that exhibits potent inhibitory activity against mitochondrial respiratory chain complex I despite having no chiral centers. To establish a method for obtaining caldorazole without relying on biological resources and for constructing a useful synthetic route for studies of its structure-activity relationship, we achieved the first total synthesis of caldorazole using a convergent synthetic route.


Asunto(s)
Cianobacterias , Policétidos , Transporte de Electrón , Relación Estructura-Actividad , Policétidos/farmacología , Estereoisomerismo
12.
Plants (Basel) ; 12(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679091

RESUMEN

Osmanthus fragrans Lour. has been cultivated for more than 2500 years because of the fragrance and color of the flowers. The flowers and roots have been used in tea, liquors, foods, and traditional Chinese medicine. The species contains more than 180 compounds including terpenoids, phenylpropanoids, polyphenols, flavonoids, and sterols. However, there has been limited information available on the allelopathic properties and allelopathic substances of O. fragrans. We investigated the allelopathy and allelopathic substances of O. fragrans and Osmanthus heterophyllus (G.Don) P.S. Green, as well as Osmanthus × fortunei Carrière, which is the hybrid species between O. fragrans and O. heterophyllus. The leaf extracts of O. fragrans, O. heterophyllus, and O. × fortunei suppressed the growth of cress (Lepidium sativum L.), alfalfa (Medicago sativa L.), Lolium multiflorum Lam., and Vulpia myuros (L.) C.C.Gmel with the extract concentration dependently. The extract of the hybrid species O. × fortune was the most active among the extracts. The main allelopathic substances of O. × fortunei and O. fragrans were isolated and identified as (+)-pinoresinol and 10-acetoxyligustroside, respectively. (+)-Pinoresinol was also found in the fallen leaves of O. × fortunei. Both compounds showed an allelopathic activity on the growth of cress and L. multiflorum. On the other hand, several allelopathic substances including (+)-pinoresinol may be involved in the allelopathy of O. heterophyllus. O. fragrans, O. heterophyllus, and O. × fortunei are evergreen trees. but their senescent leaves fall and cover the soil under the trees. It is possible that those allelopathic substances are liberated through the decomposition process of the leaves into their rhizosphere soil, and that they accumulate in the soil and provide a competitive advantage to the species through the inhibition of the growth of the neighboring competing plants. Therefore, the leaves of these Osmanthus species are allelopathic and potentially useful for weed management options in some agriculture settings to reduce commercial herbicide dependency for the developing sustainable agriculture systems.

13.
Org Lett ; 24(25): 4547-4551, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35713373

RESUMEN

Caldorazole (1) was isolated from the marine cyanobacterium Caldora sp. collected on Ishigaki Island, Okinawa, Japan. Its structure was determined to be a new polyketide that contained two thiazole rings and an O-methylenolpyruvamide moiety. Caldorazole (1) showed strong cytotoxicity toward tumor cells that had been seeded at a high density. Cell death induced by 1 in HeLa and A431 cells was also observed only in the presence of the glycolysis blocker 2-deoxy-d-glucose (2DG). Co-treatment with 1 and 2DG remarkably decreased ATP levels in these cells. Furthermore, 1 selectively inhibited complex I in the mitochondrial respiratory chain. Thus, 1 was demonstrated to exert cytotoxicity toward human tumor cells by blocking mitochondrial respiration.


Asunto(s)
Glucosa , Policétidos , Desoxiglucosa/farmacología , Glucólisis , Humanos , Policétidos/farmacología , Tiazoles/farmacología
14.
J Am Chem Soc ; 144(24): 11019-11032, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35673891

RESUMEN

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein on the endoplasmic reticulum (ER) that transports Ca2+ from the cytosol into the ER. As its function is associated with various biological phenomena, SERCA has been recognized as a promising druggable target. Here, we report the second-strongest SERCA-inhibitory compound known to date, which we isolated from the marine cyanobacterium Leptochromothrix valpauliae and named iezoside (1). The structure of iezoside (1) is fundamentally different from that of any other SERCA inhibitor, and its potency is the strongest among marine natural products (Ki 7.1 nM). In this article, we report our comprehensive analysis of iezoside (1), which covers its isolation, structural characterization supported by density functional theory (DFT) calculations and statistical analysis, total synthesis, and clarification of the mode of action of its potent antiproliferative activity (IC50 6.7 ± 0.4 nM against HeLa cells).


Asunto(s)
Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Calcio/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
15.
Org Lett ; 24(25): 4710-4714, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35713470

RESUMEN

A 68 µg amount of an acyclic polyketide, named beru'amide, was isolated from a marine cyanobacterium Okeania sp. Beru'amide contains six unique moieties in its relatively small skeleton. By applying several cutting-edge techniques, including DFT-based chemical shift calculations, we achieved the structure determination and the total synthesis of this highly functionalized scarce natural product. Furthermore, beru'amide was shown to have strong antitrypanosomal activity.


Asunto(s)
Cianobacterias , Policétidos , Amidas , Cianobacterias/química , Estructura Molecular , Policétidos/química , Policétidos/farmacología
16.
J Nat Prod ; 85(1): 169-175, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34928625

RESUMEN

Odookeanynes A (1) and B (2), two acetylene-containing lipopeptides, were isolated from an Okeania sp. marine cyanobacterium collected in Okinawa, Japan. Their structures were elucidated by spectroscopic analysis and Marfey's analysis of acid hydrolysates. Odookeanynes A (1) and B (2) dose-dependently promoted the differentiation of mouse 3T3-L1 preadipocytes in the presence of insulin.


Asunto(s)
Acetileno/química , Cianobacterias/química , Lipopéptidos/aislamiento & purificación , Agua de Mar/microbiología , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Insulina/farmacología , Lipopéptidos/química , Ratones , Conformación Proteica
17.
J Nat Prod ; 84(9): 2587-2593, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34488344

RESUMEN

Iheyamide A (1) is an antitrypanosomal linear peptide isolated from a Dapis sp. marine cyanobacterium by our group in 2020, and based on structure-activity relationships of its natural analogues, the C-terminal pyrrolinone moiety has been identified as the phamacophore for its antiparasitic activity. Further, we isolated this pyrrolinone moiety by itself as a new natural product from the marine cyanobacterium and named it iheyanone (2). As expected, iheyanone (2) showed antitrypanosomal activity, but its potency was weaker than iheyamide A (1). To clarify more detailed structure-activity relationships, we completed a total synthesis of iheyamide A (1) along with iheyanone (2) and evaluated the antitrypanosomal activities of several synthetic intermediates. As a result, we found that the longer the peptide chain, the stronger the antitrypanosomal activity. As iheyamide A (1) showed selective toxicity against Trypanosoma brucei rhodesiense, these findings can provide design guidelines for antitrypanosomal drugs.


Asunto(s)
Cianobacterias/química , Péptidos/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Organismos Acuáticos/química , Japón , Estructura Molecular , Péptidos/aislamiento & purificación , Relación Estructura-Actividad , Tripanocidas/aislamiento & purificación
18.
J Org Chem ; 86(17): 11763-11770, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479407

RESUMEN

Bromoiesol sulfates A (1) and B (2), new polyhalogenated aryl sulfates, were isolated from a Salileptolyngbya sp. marine cyanobacterium along with their hydrolyzed compounds, bromoiesols A (3) and B (4). To pick up the candidates of their structures, we used Small Molecule Accurate Recognition Technology (SMART), an artificial intelligence-based structure-prediction tool, and their structures were elucidated on the basis of single-crystal X-ray diffraction analysis of bromoiesols (3 and 4). In addition, to verify the structures, the total synthesis of bromoiesol A sulfate (1) and bromoiesol A (3) was achieved. The bromoiesol family, especially bromoiesols (3 and 4), selectively inhibited the growth of the bloodstream form of Trypanosoma brucei rhodesiense, the causative agent of human African sleeping sickness.


Asunto(s)
Antiprotozoarios , Tripanosomiasis Africana , Animales , Antiprotozoarios/farmacología , Inteligencia Artificial , Humanos , Sulfatos , Trypanosoma brucei rhodesiense
19.
Mar Drugs ; 19(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356822

RESUMEN

Metabolomics can be used to study complex mixtures of natural products, or secondary metabolites, for many different purposes. One productive application of metabolomics that has emerged in recent years is the guiding direction for isolating molecules with structural novelty through analysis of untargeted LC-MS/MS data. The metabolomics-driven investigation and bioassay-guided fractionation of a biomass assemblage from the South China Sea dominated by a marine filamentous cyanobacteria, cf. Neolyngbya sp., has led to the discovery of a natural product in this study, wenchangamide A (1). Wenchangamide A was found to concentration-dependently cause fast-onset apoptosis in HCT116 human colon cancer cells in vitro (24 h IC50 = 38 µM). Untargeted metabolomics, by way of MS/MS molecular networking, was used further to generate a structural proposal for a new natural product analogue of 1, here coined wenchangamide B, which was present in the organic extract and bioactive sub-fractions of the biomass examined. The wenchangamides are of interest for anticancer drug discovery, and the characterization of these molecules will facilitate the future discovery of related natural products and development of synthetic analogues.


Asunto(s)
Línea Celular Tumoral/efectos de los fármacos , Cianobacterias , Lipopéptidos/farmacología , Animales , Organismos Acuáticos , Productos Biológicos , Proliferación Celular/efectos de los fármacos , China , Descubrimiento de Drogas , Humanos , Metabolómica
20.
J Org Chem ; 86(18): 12528-12536, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34463094

RESUMEN

Kinenzoline (1), a new linear depsipeptide, was isolated from a marine Salileptolyngbya sp. cyanobacterium. Its structure was elucidated by spectroscopic analyses and degradation reactions. In addition, we achieved a total synthesis of 1 and confirmed its structure. Kinenzoline (1) showed highly selective antiproliferative activity against the causative organism of sleeping sickness, Trypanosoma brucei rhodesiense (IC50 4.5 µM), compared to normal human cells (WI-38, IC50 > 100 µM). Kinenzoline (1) is a promising lead compound for the development of new antitrypanosomal drugs.


Asunto(s)
Antiprotozoarios , Cianobacterias , Depsipéptidos , Tripanocidas , Tripanosomiasis Africana , Animales , Antiprotozoarios/farmacología , Depsipéptidos/farmacología , Humanos , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA