Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 88(23): 16280-16291, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947517

RESUMEN

Bacteria in certain genera can produce "bacterial polyynes" that contain a conjugated C≡C bond starting from a terminal alkyne. Protegenin A is a derivative of octadecanoic acid that contains an ene-tetrayne moiety. It was discovered in Pseudomonas protegens Cab57 and exhibits strong antioomycete and moderate antifungal activity. By introducing cayG, a cytochrome P450 gene from Burkholderia caryophylli, into P. protegens Cab57, protegenin A was converted into more complex polyynes, caryoynencins A-E. A purification method that minimized the degradation and isomerization of caryoynencins was established. For the first time, as far as we know, the 1H and 13C{1H} NMR signals of caryoynencins were completely assigned by analyzing the NMR data of the isolated compounds and protegenin A enriched with [1-13C]- or [2-13C]-acetate. Through the structural analysis of caryoynencins D/E and bioconversion experiments, we observed that CayG constructs the allyl alcohol moiety of caryoynencins A-C through sequential hydroxylation, dehydration, and hydroxylation. The recombinant strain exhibited a stronger antioomycete activity compared to the wild-type strain. This paper proposes a stable purification and structural determination method for various bacterial polyynes, and P. protegens Cab57 holds promise as an engineering host for the production of biologically active polyynes.


Asunto(s)
Bacterias , Poliinos , Poliinos/metabolismo , Antifúngicos/metabolismo , Pseudomonas/genética , Pseudomonas/química , Pseudomonas/metabolismo
2.
ACS Chem Biol ; 17(12): 3313-3320, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34015911

RESUMEN

Some bacteria uniquely produce "bacterial polyynes", which possess a conjugated C≡C bond starting with a terminal alkyne, and use them as chemical weapons against hosts and competitors. Pseudomonas protegens Cab57, a biocontrol agent against plant pathogens, has an orphan biosynthetic gene cluster for bacterial polyynes (named protegenins). In this study, the isolation, structure elucidation, and biological characterization of protegenins A-D are reported. The structures of protegenins A-D determined by spectroscopic and chemical techniques were octadecanoic acid derivatives possessing an ene-tetrayne, ene-triyne-ene, or ene-triyne moiety. The protegenins exhibited weak to strong antioomycete activity against Pythium ultimum OPU774. The deletion of proA, a protegenin biosynthetic gene, resulted in the reduction of the antioomycete activity of P. protegens. The Gac/Rsm system, a quorum sensing-like system of Pseudomonas bacteria, regulated the production of protegenins. The production profile of protegenins was dependent on the culturing conditions, suggesting a control mechanism for protegenin production selectivity. P. protegens suppressed the damping-off of cucumber seedlings caused by P. ultimum, and this protective effect was reduced in the proA-deletion mutant. Altogether, protegenins are a new class of bacterial polyynes which contribute to the antioomycete and plant-protective effects of P. protegens.


Asunto(s)
Cucumis sativus , Poliinos , Pseudomonas/genética , Cucumis sativus/genética , Cucumis sativus/microbiología , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...