Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23730, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38900063

RESUMEN

Tumor-associated macrophages (TAMs) are integral components of the tumor microenvironment. They are involved in various aspects of tumor cell biology, driving pathological processes such as tumor cell proliferation, metastasis, immunosuppression, and resistance to therapy. TAMs exert their tumorigenic effects by secreting growth factors, cytokines/chemokines, metabolites, and other soluble bioactive molecules. These mediators directly promote tumor cell proliferation and modulate interactions with immune and stromal cells, facilitating further tumor growth. As research into therapies targeting TAMs intensifies, there is a growing need for reliable methods to comprehend the impact of TAMs on cancer progression and to validate novel therapeutics directed at TAMs. The traditional "M1-M2" macrophage classification based on transcriptional profiles of TAMs is not only too simplistic to describe their physiological roles, it also does not explain differences observed between mouse and human macrophages. In this context, methods that assess how TAMs influence tumor or immune cells, either through direct contact or the release of soluble factors, offer a more promising approach. We describe here comprehensive protocols for in vitro functional assays to study TAMs, specifically regarding their impact on the growth of lung cancer cells. We have applied these methods to both mouse and human macrophages, achieving similar outcomes in promoting the proliferation of cancer cells. This methodology can serve as a standardized approach for testing novel therapeutic approaches, targeting TAMs with novel immunotherapeutic compounds, or utilizing gene-editing techniques. Taken together, the described methodology may contribute to our understanding of complex macrophage-tumor interactions and support the development of innovative therapeutic strategies.


Asunto(s)
Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Animales , Ratones , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Proliferación Celular , Macrófagos/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Neoplasias/patología , Neoplasias/metabolismo
2.
Gut ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834297

RESUMEN

OBJECTIVE: Highly malignant pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant immunosuppressive and fibrotic tumour microenvironment (TME). Future therapeutic attempts will therefore demand the targeting of tumours and stromal compartments in order to be effective. Here we investigate whether dual specificity and tyrosine phosphorylation-regulated kinase 1B (DYRK1B) fulfil these criteria and represent a promising anticancer target in PDAC. DESIGN: We used transplantation and autochthonous mouse models of PDAC with either genetic Dyrk1b loss or pharmacological DYRK1B inhibition, respectively. Mechanistic interactions between tumour cells and macrophages were studied in direct or indirect co-culture experiments. Histological analyses used tissue microarrays from patients with PDAC. Additional methodological approaches included bulk mRNA sequencing (transcriptomics) and proteomics (secretomics). RESULTS: We found that DYRK1B is mainly expressed by pancreatic epithelial cancer cells and modulates the influx and activity of TME-associated macrophages through effects on the cancer cells themselves as well as through the tumour secretome. Mechanistically, genetic ablation or pharmacological inhibition of DYRK1B strongly attracts tumoricidal macrophages and, in addition, downregulates the phagocytosis checkpoint and 'don't eat me' signal CD24 on cancer cells, resulting in enhanced tumour cell phagocytosis. Consequently, tumour cells lacking DYRK1B hardly expand in transplantation experiments, despite their rapid growth in culture. Furthermore, combining a small-molecule DYRK1B-directed therapy with mammalian target of rapamycin inhibition and conventional chemotherapy stalls the growth of established tumours and results in a significant extension of life span in a highly aggressive autochthonous model of PDAC. CONCLUSION: In light of DYRK inhibitors currently entering clinical phase testing, our data thus provide a novel and clinically translatable approach targeting both the cancer cell compartment and its microenvironment.

3.
Cancer Immunol Immunother ; 73(2): 25, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280079

RESUMEN

Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Humanos , Ratones , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Resistencia a Medicamentos , Etopósido/farmacología , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción/metabolismo , Macrófagos Asociados a Tumores/metabolismo
5.
Cell Death Dis ; 14(1): 19, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635266

RESUMEN

The abnormal tumor microenvironment (TME) often dictates the therapeutic response of cancer to chemo- and immuno-therapy. Aberrant expression of pericentromeric satellite repeats has been reported for epithelial cancers, including lung cancer. However, the transcription of tandemly repetitive elements in stromal cells of the TME has been unappreciated, limiting the optimal use of satellite transcripts as biomarkers or anti-cancer targets. We found that transcription of pericentromeric satellite DNA (satDNA) in mouse and human lung adenocarcinoma was observed in cancer-associated fibroblasts (CAFs). In vivo, lung fibroblasts expressed pericentromeric satellite repeats HS2/HS3 specifically in tumors. In vitro, transcription of satDNA was induced in lung fibroblasts in response to TGFß, IL1α, matrix stiffness, direct contact with tumor cells and treatment with chemotherapeutic drugs. Single-cell transcriptome analysis of human lung adenocarcinoma confirmed that CAFs were the cell type with the highest number of satellite transcripts. Human HS2/HS3 pericentromeric transcripts were detected in the nucleus, cytoplasm, extracellularly and co-localized with extracellular vesicles in situ in human biopsies and activated fibroblasts in vitro. The transcripts were transmitted into recipient cells and entered their nuclei. Knock-down of satellite transcripts in human lung fibroblasts attenuated cellular senescence and blocked the formation of an inflammatory CAFs phenotype which resulted in the inhibition of their pro-tumorigenic functions. In sum, our data suggest that satellite long non-coding (lnc) RNAs are induced in CAFs, regulate expression of inflammatory genes and can be secreted from the cells, which potentially might present a new element of cell-cell communication in the TME.


Asunto(s)
Adenocarcinoma , Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Animales , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fibroblastos/metabolismo , ADN Satélite , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Pulmón , Carcinogénesis/genética , Microambiente Tumoral/genética
6.
Sci Rep ; 11(1): 21314, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716378

RESUMEN

The release of Hsp70 chaperone from tumor cells is found to trigger the full-scale anti-cancer immune response. Such release and the proper immune reaction can be induced by the delivery of recombinant Hsp70 to a tumor and we sought to explore how the endogenous Hsp70 can be transported to extracellular space leading to the burst of anti-cancer activity. Hsp70 transport mechanisms were studied by analyzing its intracellular tracks with Rab proteins as well as by using specific inhibitors of membrane domains. To study Hsp70 forms released from cells we employed the assay consisting of two affinity chromatography methods. Hsp70 content in culture medium and extracellular vesicles (EVs) was measured with the aid of ELISA. The properties and composition of EVs were assessed using nanoparticle tracking analysis and immunoblotting. The activity of immune cells was studied using an assay of cytotoxic lymphocytes, and for in vivo studies we employed methods of affinity separation of lymphocyte fractions. Analyzing B16 melanoma cells treated with recombinant Hsp70 we found that the chaperone triggered extracellular transport of its endogenous analog in soluble and enclosed in EVs forms; both species efficiently penetrated adjacent cells and this secondary transport was corroborated with the strong increase of Natural Killer (NK) cell toxicity towards melanoma. When B16 and CT-26 colon cancer cells before their injection in animals were treated with Hsp70-enriched EVs, a powerful anti-cancer effect was observed as shown by a two-fold reduction in tumor growth rate and elevation of life span. We found that the immunomodulatory effect was due to the enhancement of the CD8-positive response and anti-tumor cytokine accumulation; supporting this there was no delay in CT-26 tumor growth when Hsp70-enriched EVs were grafted in nude mice. Importantly, pre-treatment of B16 cells with Hsp70-bearing EVs resulted in a decline of arginase-1-positive macrophages, showing no generation of tumor-associated macrophages. In conclusion, Hsp70-containing EVs generated by specifically treated cancer cells give a full-scale and effective pattern of anti-tumor immune responses.


Asunto(s)
Inmunidad Adaptativa , Vesículas Extracelulares , Proteínas HSP70 de Choque Térmico/farmacología , Animales , Carcinoma/inmunología , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Células HEK293 , Humanos , Células Asesinas Naturales/inmunología , Melanoma Experimental/inmunología , Ratones
7.
Pharmaceutics ; 12(5)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366047

RESUMEN

Traumatic brain injury (TBI) often causes massive brain cell death accompanied by the accumulation of toxic factors in interstitial and cerebrospinal fluids. The persistence of the damaged brain area is not transient and may occur within days and weeks. Chaperone Hsp70 is known for its cytoprotective and antiapoptotic activity, and thus, a therapeutic approach based on chemically induced Hsp70 expression may become a promising approach to lower post-traumatic complications. To simulate the processes of secondary damage, we used an animal model of TBI and a cell model based on the cultivation of target cells in the presence of cerebrospinal fluid (CSF) from injured rats. Here we present a novel low molecular weight substance, PQ-29, which induces the synthesis of Hsp70 and empowers the resistance of rat C6 glioma cells to the cytotoxic effect of rat cerebrospinal fluid taken from rats subjected to TBI. In an animal model of TBI, PQ-29 elevated the Hsp70 level in brain cells and significantly slowed the process of the apoptosis in acceptor cells in response to cerebrospinal fluid action. The compound was also shown to rescue the motor function of traumatized rats, thus proving its potential application in rehabilitation therapy after TBI.

8.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861801

RESUMEN

Cancer cells are known to contain high levels of the heat shock protein 70 kDa (Hsp70), which mediates increased cell proliferation, escape from programmed cell death, enhanced invasion, and metastasis. A part of Hsp70 molecules may release from cancer cells and affect the behavior of adjacent stromal cells. To explore the effects of Hsp70 on the status of monocytes/macrophages in the tumor locale, we incubated human carcinoma cells of three distinct lines with normal and reduced content of Hsp70 with THP1 monocytes. Using two methods, we showed that the cells with knock-down of Hsp70 released a lower amount of protein in the extracellular medium. Three cycles of the co-cultivation of cancer and monocytic cells led to the secretion of several cytokines typical of the tumor microenvironment (TME) and to pro-cancer activation of the monocytes/macrophages as established by elevation of F4/80 and arginase-1 markers. Unexpectedly, the efficacy of epithelial-mesenchymal transition and resistance of carcinoma cells to anticancer drugs after incubation with monocytic cells were more pronounced in cells with lower Hsp70, e.g., releasing less Hsp70 into the extracellular milieu. These data suggest that Hsp70 released from tumor cells into the TME is able, together with the development of an anti-cancer immune response, to limit the conversion of a considerable part of monocytic cells to the pro-tumor phenotype.


Asunto(s)
Carcinogénesis/inmunología , Proteínas HSP70 de Choque Térmico/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Microambiente Tumoral , Células A549 , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Humanos , Inmunidad , Macrófagos/patología , Monocitos/patología
9.
Artículo en Inglés | MEDLINE | ID: mdl-30991893

RESUMEN

3'-Azidothymidine (AZT) reacts with 1-propargyl-5-R-1H- and 2-propargyl-5-R-2H-tetrazoles (R = H, Me, CH2COOEt, CH2CON(CH3)2, Ph, 2-CH3-C6H4, or 4-NO2-C6H4) via the Cu(I)-catalyzed asymmetric [3 + 2] cycloaddition to give 3'-modified thymidine analogs incorporating 1H-1,2,3-triazolyl, 1H-, and 2H-tetrazolyl fragments in 41-76% yield. The structures of the obtained compounds have been elucidated by means of HRESI+-MS, 1H and 13 C{1H} NMR, and single crystal X-ray diffraction {for 3'-[4-(1H-5-N,N-dimethylaminocarbonylmethyltetrazol-1-yl)-1H-1,2,3-triazol-1-yl]thymidine 10d}. In vitro biological evaluation of the prepared compounds has been performed; they have exhibited low activity against phenotypic HIV-1899A. Moderate anti-influenza activity against influenza virus A/Puerto Rico/8/34 (H1N1) strain has been observed in the cases of 3'-(4-(1H-tetrazol-1-ylmethyl)-1H-1,2,3-triazol-1-yl)thymidine 10a (IC50 39.6 µg/mL), 3'-(4-(2H-5-ethoxycarbonyltetrazol-2-ylmethyl)-1H-1,2,3-triazol-1-yl)thymidine 11c (IC50 31.6 µg/mL), and 3'-(4-(2H-5-(4-nitrophenyl)-tetrazol-2-ylmethyl)-1H-1,2,3-triazol-1-yl)thymidine 11g (IC50 46.4 µg/mL). The tested compounds possess very low cytotoxicity towards MDCK and MT4 cells as well as tumor human cervical carcinoma HeLa and promyelocytic leukemia HL-60 cells.


Asunto(s)
Tetrazoles/química , Timidina/análogos & derivados , Timidina/síntesis química , Triazoles/química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Catálisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cobre/química , Cristalografía por Rayos X , Reacción de Cicloadición , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Modelos Moleculares , Relación Estructura-Actividad , Timidina/farmacología
10.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149619

RESUMEN

The Hsp70 chaperone binds and inhibits proteins implicated in apoptotic signaling including Caspase-3. Induction of apoptosis is an important mechanism of anti-cancer drugs, therefore Hsp70 can act as a protective system in tumor cells against therapeutic agents. In this study we present an assessment of candidate compounds that are able to dissociate the complex of Hsp70 with Caspase-3, and thus sensitize cells to drug-induced apoptosis. Using the PASS program for prediction of biological activity we selected a derivative of benzodioxol (BT44) that is known to affect molecular chaperones and caspases. Drug affinity responsive target stability and microscale thermophoresis assays indicated that BT44 bound to Hsp70 and reduced the chaperone activity. When etoposide was administered, heat shock accompanied with an accumulation of Hsp70 led to an inhibition of etoposide-induced apoptosis. The number of apoptotic cells increased following BT44 administration, and forced Caspase-3 processing. Competitive protein⁻protein interaction and immunoprecipitation assays showed that BT44 caused dissociation of the Hsp70⁻Caspase-3 complex, thus augmenting the anti-tumor activity of etoposide and highlighting the potential role of molecular separators in cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Etopósido/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Neoplasias/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Unión Proteica
11.
Oncotarget ; 9(43): 27268-27279, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29930764

RESUMEN

Combinational anticancer therapy demonstrates increased efficiency, as it targets different cell-survival mechanisms and allows the decrease of drug dosages that are often toxic to normal cells. Inhibitors of the heat shock response (HSR) are known to reduce the efficiency of proteostasis mechanisms in many cancerous cells, and therefore, may be employed as anti-tumor drug complements. However, the application of HSR inhibitors is limited by their cytotoxicity, and we suggested that milder inhibitors may be employed to sensitize cancer cells to a certain drug. We used a heat-shock element-luciferase reporter system and discovered a compound, CL-43, that inhibited the levels of heat shock proteins 40, 70 (Hsp70), and 90 kDa in HCT-116 cells and was not toxic for cells of several lines, including normal human fibroblasts. Consequently, CL-43 was found to reduce colony formation and motility of HCT-116 in the appropriate assays suggesting its possible application in the exploration of biology of metastasizing tumors. Importantly, CL-43 elevated the growth-inhibitory and cytotoxic activity of etoposide, cisplatin, and doxorubicin suggesting that the pro-drug has broad prospect for application in a variety of anti-tumor therapy schedules.

12.
Biochem Biophys Res Commun ; 487(3): 723-727, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28450110

RESUMEN

Huntington's disease (HD) has been recently shown to have a horizontally transmitted, prion-like pathology. Thus, the migration of polyglutamine-containing aggregates to acceptor cells is important for the progression of HD. These aggregates contain glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which increases their intracellular transport and their toxicity. Here, we show that RX624, a derivative of hydrocortisone that binds to GAPDH, prevents the formation of aggregates of GAPDH-polyglutamine excreted into the culture medium by PC-12 rat cells expressing mutant huntingtin. RX624 was previously shown to be unable to penetrate cells and, thus, its principal therapeutic action might be the inhibition of polyglutamine-GAPDH complex aggregation in the extracellular matrix. The administration of RX624 to SH-SY5Y acceptor cells that incubated in conditioned medium from PC-12 cells expressing mutant huntingtin caused an approximately 20% increase in survival. This suggests that RX624 might be useful as a drug against polyglutamine pathologies, and that is could be administered exogenously without affecting target cell physiology. This protective effect was validated by the similar effect of an anti-GAPDH specific antibody.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Hidrocortisona/administración & dosificación , Neuronas/metabolismo , Agregado de Proteínas/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Líquido Extracelular , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Humanos , Hidrocortisona/análogos & derivados , Hidrocortisona/farmacocinética , Neuronas/citología , Neuronas/efectos de los fármacos , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...