Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Med Sci Sports Exerc ; 56(5): 927-932, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38115226

RESUMEN

PURPOSE: We evaluated whether repeated high-intensity interval exercise (HIIE) influences plasma oxytocin (OT) concentration in healthy men, and, given that OT is mainly synthesized in the hypothalamus, we assessed the concentration difference between the arterial (OT ART ) versus the internal jugular venous OT concentration (OT IJV ). Additionally, we hypothesized that an increase in cerebral OT release and the circulating concentration would be augmented by repeated HIIE. METHODS: Fourteen healthy men (age = 24 ± 2 yr; mean ± SD) performed two identical bouts of HIIE. These HIIE bouts included a warm-up at 50%-60% maximal workload ( Wmax ) for 5 min followed by four bouts of exercise at 80%-90% Wmax for 4 min interspersed by exercise at 50%-60% Wmax for 3 min. The HIIE bouts were separated by 60 min of rest. OT was evaluated in blood through radial artery and internal jugular vein catheterization. RESULTS: Both HIIE bouts increased both OT ART (median [IQR], from 3.9 [3.4-5.4] to 5.3 [4.4-6.3] ng·mL -1 in the first HIIE, P < 0.01) and OT IJV (from 4.6 [3.4-4.8] to 5.9 [4.3-8.2] ng·mL -1 , P < 0.01), but OT ART-IJV was unaffected (from -0.24 [-1.16 to 1.08] to 0.04 [-0.88 to 0.78] ng·mL -1 , P = 1.00). The increased OT levels were similar in the first and second HIIE bouts (OT ARTP = 0.25, OT IJVP = 0.36). CONCLUSIONS: Despite no change in the cerebral OT release via the internal jugular vein, circulating OT increases during HIIE regardless of the accumulated exercise volume, indicating that OT may play role as one of the exerkines.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Oxitocina , Adulto , Humanos , Masculino , Adulto Joven , Ejercicio Físico/fisiología , Oxitocina/sangre , Ejercicio de Calentamiento
2.
Sci Rep ; 13(1): 21337, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049500

RESUMEN

We aimed to evaluate the blood lactate level in response to two bouts of exercise. First, we hypothesized that blood lactate elevation in response to moderate-intensity aerobic exercise (MIAE) would be lower at the end of the second bout of MIAE than the first bout of MIAE. In this context, we also hypothesized that lactate accumulation at the end of resistance exercise (RE) would be reduced if MIAE is performed before RE (i.e., concurrent exercise; CE). If so, we hypothesized that the order of the CE (i.e., RE + MIAE vs. MIAE + RE) influences blood lactate kinetics. To test the hypotheses, forty-three healthy men participated in three studies. In study 1, 20 men (age 21 ± 2 years) performed two bouts of a 20-min MIAE separated by a 20-min rest interval. In study 2, 11 men (age 22 ± 1 years) performed RE only and CE (MIAE + RE; ARCE) with a 20-min rest interval in a crossover design. In study 3, 12 men (age 21 ± 2 years) performed both CEs, which were ARCE and RE + MIAE (RACE), with a 20-min rest interval in a crossover design. We measured blood lactate before and at the end of each exercise session. In study 1, the blood lactate response to the second bout of MIAE was lower than that of the first bout (P < 0.001, r = 0.68). However, the blood lactate response to the ARCE trial was not lower than the response to the RE trial in study 2 (P = 0.475, r = 0.22). The results of study 3 showed that the RACE and ARCE trials induced a similar lactate response (MIAE P = 0.423, r = 0.28; RE P = 0.766, d = 0.03). These observations indicate that whereas lactate accumulation might be diminished by a second bout of MIAE, a different type of exercise (i.e., aerobic/resistance) did not result in a diminished lactate accumulation in response to a second bout of exercise.


Asunto(s)
Ácido Láctico , Consumo de Oxígeno , Humanos , Masculino , Adulto Joven , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Terapia por Ejercicio , Extremidad Inferior , Consumo de Oxígeno/fisiología , Estudios Cruzados
3.
Sci Rep ; 13(1): 22644, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114553

RESUMEN

Aerobic exercise acutely improves cognitive function (e.g., executive function (EF); memory recognition (MR)) and increases circulating brain-derived neurotrophic factor (BDNF). In addition, branched-chain amino acids (BCAA) ingestion acutely shortens the choice reaction time and increases brain BDNF. We examined whether the ingestion of essential amino acid (EAA) supplements (mainly composed of BCAA) would positively impact on cognitive function and circulating BDNF after moderate-intensity aerobic exercise. Twenty-two healthy young men received either an EAA supplements or the placebo (PL) 30 min before undergoing aerobic exercise. The participants performed a cycling exercise at 60% of peak oxygen uptake for 30 min. EF after aerobic exercise was better after the EAA treatment than after the PL treatment (P = 0.02). MR (P = 0.38 for response accuracy; P = 0.15 for reaction time) and circulating BDNF (P = 0.59) were not altered by EAA supplements. EF improvement was correlated with increases in some amino acids (leucine, isoleucine, valine, lysine, phenylalanine; all Ps < 0.05) that are potential substrates for synthesizing neurotransmitters in the brain. These results suggest that EAA supplements ingestion had a positive effect on EF after moderate-intensity aerobic exercise, while MR and BDNF were not altered.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Función Ejecutiva , Masculino , Humanos , Aminoácidos Esenciales , Aminoácidos de Cadena Ramificada , Ejercicio Físico/fisiología , Ingestión de Alimentos
4.
Res Sports Med ; 31(6): 719-733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35147057

RESUMEN

This study aimed to examine differences in the intestinal microbiota diversity in individuals with and without a history of a lateral ankle sprain (LAS). Fifty male college student athletes with (n=32) and without (n=18) a LAS history participated in this study. Faecal samples were collected in the morning after awakening during an off-season, and faecal microbiota were characterized via bacteria 16S rRNA amplicon sequencing. Alpha-diversity metrics and ß-diversity indices were calculated to assess the gut microbiota diversity. The LAS-history group significantly had lower Chao1 (p=0.020) and abundance-based coverage estimators (p=0.035) indices compared to the control group. Gut microbiota composition was not significantly different between athletes with a LAS history and controls (R2 =0.01, p 0.414). Athletes with a history of LASs had significantly higher proportions of Bacteroides Fragilis (p=0.024) and Ruminococcus Gnavus (p=0.021) compared with controls. The gut microbiota of athletes with a LAS history had less richness compared to controls, indicating potential associations between a LAS and the gut microbiota. This study highlights the potential link of a LAS to global health. This study may help raise awareness of strategies to prevent long-term health-related negative consequences in people suffering from LASs.

5.
J Strength Cond Res ; 37(2): 270-276, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35612946

RESUMEN

ABSTRACT: Shimozawa, Y, Kurihara, T, Kusagawa, Y, Hori, M, Numasawa, S, Sugiyama, T, Tanaka, T, Suga, T, Terada, RS, Isaka, T, and Terada, M. Point prevalence of the biomechanical dimension of dysfunctional breathing patterns among competitive athletes. J Strength Cond Res 37(2): 270-276, 2023-There is growing evidence of associations between altered biomechanical breathing patterns and numerous musculoskeletal and psychological conditions. The prevalence of dysfunctional and diaphragmatic breathing patterns is unknown among athletic populations. The purpose of this study was to examine the prevalence of dysfunctional and diaphragmatic breathing patterns among athletic populations with a clinical measure to assess the biomechanical dimension of breathing patterns. Using a cross-sectional design, 1,933 athletes across multiple sports and ages were screened from 2017 to 2020. Breathing patterns were assessed using the Hi-Lo test in the standing position. Scores of the Hi-Lo test were determined based on the presence or absence of abdominal excursion, anterior-posterior chest expansion, superior rib cage migration, and shoulder elevation. The Hi-Lo test scores were used to categorize observational breathing mechanics as dysfunctional and diaphragmatic breathing patterns. The prevalence of athletes with dysfunctional breathing patterns was 90.6% (1,751 of 1,933). Athletes with diaphragmatic breathing patterns accounted for 9.4% of all athletes in our sample (182 of 1,933). There were no differences in the proportion of breathing patterns between male and female athletes ( p = 0.424). Breathing patterns observations were associated with sport-setting categories ( p = 0.002). The highest percentages of dysfunctional breathers were in middle school student athletes (93.7%), followed by elementary school student athletes (91.2%), high school student athletes (90.6%), professional/semiprofessional athletes (87.5%), and collegiate athletes (84.8%). The current study observed that dysfunctional breathing patterns (90.6%) in the biomechanical dimension were more prevalent than diaphragmatic breathing pattern (9.4%) among competitive athletes. These results suggest that clinicians may need to consider screening breathing patterns and implementing intervention programs aimed to improve the efficiency of biomechanical dimensions of breathing patterns in athletic populations. This study may help raise awareness of impacts of dysfunctional breathing patterns on athletes' health and performance.


Asunto(s)
Traumatismos en Atletas , Deportes , Humanos , Masculino , Femenino , Niño , Prevalencia , Estudios Transversales , Atletas , Respiración , Traumatismos en Atletas/epidemiología
6.
Front Sports Act Living ; 5: 1309938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274032

RESUMEN

Introduction: This present study aimed to compare ultrasonographic measures of femoral articular cartilage during two-year seasons between collegiate rugby players who have attended supervised rehabilitation following intracapsular knee joint injury and those without a history of knee injury. Methods: Using a prospective observational study design, 12 male collegiate rugby players with a previous history of intracapsular knee joint injury who have received and completed supervised rehabilitation following their injury and 44 players without knee joint injury participated in this study. Ultrasonographic images were used to verify changes in femoral articular cartilage thickness and cross-sectional area (CSA) with or without a previous history of knee joint injury over two consecutive rugby seasons. Results: Significant time main effects were observed for the lateral condylar thickness (p < 0.001), the intercondylar thickness (p = 0.001), the medial condylar thickness (p < 0.001), and CSA (p < 0.001). No significant interactions nor group main effects were identified for all femoral articular cartilage (p < 0.05). Conclusions: Collegiate rugby players demonstrated a decrease in femoral articular cartilage thickness and CSA over two-year consecutive rugby seasons. These findings indicate that engaging in collegiate rugby induces alterations in femoral articular cartilage structure. Furthermore, there were no differences in all femoral cartilage outcome measures between rugby players with and without a previous history of traumatic knee joint injury. Therefore, attending supervised rehabilitation at the time of their knee joint injury appeared to reduce the impact of a previous history of intracapsular knee joint injury on the change in femoral articular cartilage thickness and CSA among active rugby players.

7.
BMC Res Notes ; 15(1): 118, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346356

RESUMEN

OBJECTIVE: It remains unclear that the relationship between sprint and/or endurance performance and salivary immunological factors and stress hormones in athletes. The aim of this study was to investigate if salivary immunological factors and stress hormones are related to sprint and endurance performance in sprinters and long-distance runners. Fourteen male sprinters provided 100-m record and 22 male long-distance runners provided 5000-m record. Salivary IgA, MCP-1, interleukin-8, and cortisol levels in sprinters and long-distance runners were measured by ELISA assay. RESULTS: No significant differences were found in all salivary parameters between sprinters and long-distance runners. In long-distance runners, the salivary IgA and MCP-1 concentrations and secretory rate significantly correlated with their personal best 5000-m times (r = 0.534, P = 0.011; r = 0.567, P = 0.006; r = 0.452, P = 0.035, respectively). In sprinters, the salivary IgA concentration, MCP-1 concentration, and MCP-1 secretory rate did not correlate with personal best 100-m sprint times (r = - 0.260, P = 0.369; r = 0.128, P = 0.663; r = 0.122, P = 0.677, respectively). Therefore, the present study is the first to determine that immunological factors such as IgA and MCP1 may be related to endurance performance in long-distance runners.


Asunto(s)
Carrera , Atletas , Ejercicio Físico , Humanos , Inmunoglobulina A , Masculino , Proyectos Piloto
8.
Res Q Exerc Sport ; 93(4): 781-787, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34723757

RESUMEN

Purpose: We previously reported that the cross-sectional area of the quadriceps femoris is correlated with the sprint performance of preadolescent sprinters. This finding suggests a close relationship between knee extensor torque-enhancing morphology and sprint performance in this young population. To further clarify this issue, in this study, we examined the relationships of the quadriceps femoris muscle volume (MV) and knee extensor moment arm (MA) with sprint performance in preadolescent sprinters. Methods: The quadriceps femoris MV and knee extensor MA in 15 sprint-trained preadolescent boys were measured using magnetic resonance imaging. Sprint performance was evaluated using a personal best 100-m sprint time and the higher 50-m sprint velocity of two 50-m sprint tests. Results: The quadriceps femoris MV and knee extensor MA were significantly correlated with personal best 100-m sprint time (r = -0.810 and -0.752, P ≤ 0.001 for both) and 50-m sprint velocity (r = 0.814 and 0.702, P < .01 for both). Furthermore, the relative quadriceps femoris MV normalized to body mass was significantly correlated with both the personal best 100-m sprint time (r = -0.620, P = .014) and 50-m sprint velocity (r = 0.686, P = .005). In contrast, no significant correlations were observed between the relative knee extensor MA normalized to body height and both sprint performance parameters. Conclusions: These findings suggest that the quadriceps femoris size, rather than the knee extensor MA dimension, is a more important morphological factor for achieving superior sprint performance in preadolescent sprinters.


Asunto(s)
Rendimiento Atlético , Carrera , Masculino , Humanos , Carrera/fisiología , Rendimiento Atlético/fisiología , Rodilla , Extremidad Inferior , Torque , Músculo Esquelético/fisiología
9.
Front Physiol ; 12: 741966, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880772

RESUMEN

The length of rest interval between sets (i.e., inter-set rest interval) is an important variable for resistance exercise program. However, the impact of the inter-set rest interval on improvements in cognitive function following resistance exercise remains unknown. In this study, we compared the effect of short rest interval (SRI) vs. long rest interval (LRI) protocols on post-exercise cognitive inhibitory control (IC) improvements induced by low-intensity resistance exercise. Twenty healthy, young males completed both SRI and LRI sessions in a crossover design. The bilateral knee extensor low-intensity resistance exercise was programed for six sets with 10 repetitions per set using 40% of one-repetition maximum. The inter-set rest interval lengths for SRI and LRI protocols were set for 1 and 3min, respectively. The color-word Stroop task (CWST) was administrated at six time points: baseline, pre-exercise, immediate post-exercise, and every 10min during the 30-min post-exercise recovery period. The levels of blood lactate, which may be an important determinant for improving IC, throughout the 30-min post-exercise recovery period were significantly higher following SRI protocol than following LRI protocol (p=0.002 for interaction effect). In line with this result, large-sized decreases in the reverse-Stroop interference score, which represent improved IC, were observed immediately after SRI protocol (d=0.94 and 0.82, respectively, vs. baseline and pre-exercise) as opposed to the moderate-sized decreases immediately after LRI protocol (d=0.62 and 0.66, respectively, vs. baseline and pre-exercise). Moreover, significant decreases in the reverse-Stroop interference score were observed from 10 to 30min after SRI protocol (all ps<0.05 vs. baseline and/or pre-exercise), whereas no such decrease was observed after LRI protocol. Furthermore, the degree of decreases in the reverse-Stroop interference score throughout the 30-min post-exercise recovery period was significantly greater in SRI protocol than in LRI protocol (p=0.046 for interaction effect). We suggest that the SRI protocol is more useful in improving post-exercise IC, potentially via greater circulating lactate levels, compared to the LRI protocol. Therefore, the inter-set rest interval length may be an important variable for determining the degree of cognitive function improvements following resistance exercise in healthy young males.

10.
Physiol Rep ; 9(23): e15122, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34877802

RESUMEN

Resistance exercise (RE) with blood flow restriction (BFR) is recognized as a beneficial strategy in increasing skeletal muscle mass and strength. However, the effects of BFR on changes in perceptual parameters, particularly those related to exercise adherence, induced by RE are not completely understood. In this study, we examined the exercise adherence-related perceptual responses to low-load BFR-RE. Sixteen young males performed both BFR and non-BFR (NBFR) sessions in a crossover design. The bilateral knee extensor low-load RE was performed with a standard BFR-RE protocol, consisting of four sets (total 75 repetitions), using 20% of one-repetition maximum. BFR-RE was performed with 200 mmHg pressure cuffs placed around the proximal region of the thighs. NBFR-RE was performed without pressure cuffs. The ratings of perceived exertion and leg discomfort measured using the Borg's Scales were higher for BFR-RE session than for NBFR-RE session (both p < 0.001 for interaction effect). The Feeling Scale-measured affect and Task Motivation Scale-measured task motivation were lower for BFR-RE session than for NBFR-RE session (both p < 0.05 for interaction effect); by contrast, the Numerical Rating Scale-measured perceived pain was higher for BFR-RE session than for NBFR-RE session (p < 0.001 for interaction effect). The Physical Activity Enjoyment Scale-measured enjoyment immediately after RE was lower with BFR than with NBFR (p < 0.001). These findings suggest that BFR exacerbates the exercise adherence-related perceptual responses to low-load RE in young males. Therefore, further studies are needed to develop effective strategies that minimize the BFR-RE-induced negative effects on perceptual responses.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Entrenamiento de Fuerza , Afecto/fisiología , Proteínas Bacterianas/fisiología , Glucemia , Estudios Cruzados , Electromiografía , Frecuencia Cardíaca/fisiología , Humanos , Ácido Láctico/sangre , Masculino , Proteínas de la Membrana/fisiología , Proyectos Piloto , Muslo/irrigación sanguínea , Adulto Joven
11.
J Appl Biomech ; 37(6): 531-537, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758454

RESUMEN

This study examined the relationship between body segment mass and running performance in endurance runners. The total (muscle, fat, and bone masses), lean (muscle mass), and fat masses of the leg, arm, and trunk segments in 37 well-trained endurance runners were measured using dual-energy X-ray absorptiometer. The relative segment mass was calculated by normalizing the absolute mass to body mass. There were no significant correlations between absolute total, lean, and fat masses of all 3 segments and personal best 5000-m race time. No significant correlations were also observed between all 3 relative masses of the arm segment and personal best 5000-m race time. In contrast, medium positive correlations were observed between the relative total and lean masses of the leg segment and personal best 5000-m race time (r = .387 and .335, respectively, both P ≤ .031). Furthermore, large negative correlations were observed between the relative total and lean masses of the trunk segment and personal best 5000-m race time (r = -.500 and -.548, respectively, both P ≤ .002). These findings suggest that a mass distribution with smaller leg mass and greater trunk mass may be advantageous for achieving better running performance in endurance runners.


Asunto(s)
Resistencia Física , Carrera , Composición Corporal/fisiología , Densidad Ósea , Humanos , Músculo Esquelético/fisiología , Resistencia Física/fisiología , Carrera/fisiología
12.
Front Sports Act Living ; 3: 671248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34622204

RESUMEN

The plantar flexor torque plays an important role in achieving superior sprint performance in sprinters. Because of the close relationship between joint torque and muscle size, a simple assumption can be made that greater plantar flexor muscles (i.e., triceps surae muscles) are related to better sprint performance. However, previous studies have reported the absence of these relationships. Furthermore, to examine these relationships, only a few studies have calculated the muscle volume (MV) of the plantar flexors. In this study, we hypothesized that the plantar flexor MVs may not be important morphological factors for sprint performance. To test our hypothesis, we examined the relationships between plantar flexor MVs and sprint performance in sprinters. Fifty-two male sprinters and 26 body size-matched male non-sprinters participated in this study. On the basis of the personal best 100 m sprint times [range, 10.21-11.90 (mean ± SD, 11.13 ± 0.42) s] in sprinters, a K-means cluster analysis was applied to divide them into four sprint performance level groups (n = 8, 8, 19, and 17 for each group), which was the optimal number of clusters determined by the silhouette coefficient. The MVs of the gastrocnemius lateralis (GL), gastrocnemius medialis (GM), and soleus (SOL) in participants were measured using magnetic resonance imaging. In addition to absolute MVs, the relative MVs normalized to body mass were used for the analyses. The absolute and relative MVs of the total and individual plantar flexors were significantly greater in sprinters than in non-sprinters (all p < 0.01, d = 0.64-1.39). In contrast, all the plantar flexor MV variables did not differ significantly among the four groups of sprinters (all p > 0.05, η2 = 0.02-0.07). Furthermore, all plantar flexor MV variables did not correlate significantly with personal best 100 m sprint time in sprinters (r = -0.253-0.002, all p > 0.05). These findings suggest that although the plantar flexor muscles are specifically developed in sprinters compared to untrained non-sprinters, the greater plantar flexor MVs in the sprinters may not be important morphological factors for their sprint performance.

13.
Physiol Rep ; 9(15): e14981, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34337901

RESUMEN

A shorter joint moment arm (MA) may help maintain the necessary muscle force when muscle contractions are repeated. This beneficial effect may contribute to reducing the energy cost during running. In this study, we examined the correlation between patellar tendon MA and running performance in endurance runners. The patellar tendon MA and quadriceps femoris muscle volume (MV) in 42 male endurance runners and 14 body size-matched male untrained participants were measured using a 1.5-T magnetic resonance system. The patellar tendon MA was significantly shorter in endurance runners than in untrained participants (p = 0.034, d = 0.65). In endurance runners, shorter patellar tendon MA correlated significantly with better personal best 5000-m race rime (r = 0.322, p = 0.034). A trend toward such a significant correlation was obtained between quadriceps femoris MV and personal best 5000-m race time (r = 0.303, p = 0.051). Although the correlation between patellar tendon MA and personal best 5000-m race time did not remain significant after adjusting for the quadriceps femoris MV (partial r = 0.247, p = 0.120), a stepwise multiple regression analysis (conducted with body height, body mass, patellar tendon MA, and quadriceps femoris MV) selected the patellar tendon MA (ß = 0.322) as only a predictive variable for the personal best 5000-m race time (adjusted R2  = 0.081, p = 0.038). These findings suggest that the shorter patellar tendon MA, partially accorded with the smaller quadriceps femoris size, may be a favorable morphological variable for better running performance in endurance runners.


Asunto(s)
Brazo/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Ligamento Rotuliano/fisiología , Resistencia Física , Carrera , Tendones/fisiología , Adulto , Fenómenos Biomecánicos , Estudios de Casos y Controles , Humanos , Masculino , Persona de Mediana Edad
14.
J Physiol Sci ; 71(1): 22, 2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34273958

RESUMEN

This study compared the effects of low-intensity resistance exercise with slow movement and tonic force generation (ST-LRE) and high-intensity resistance exercise (HRE) on post-exercise improvements in cognitive inhibitory control (IC). Sixteen young males completed ST-LRE and HRE sessions in a crossover design. Bilateral knee extensor ST-LRE and HRE (8 repetitions/set, 6 sets) were performed with 50% of one-repetition maximum with slow contractile speed and 80% of one-repetition maximum with normal contractile speed, respectively. The IC was assessed using the color-word Stroop task at six time points: baseline, pre-exercise, immediate post-exercise, and every 10 min during the 30-min post-exercise recovery period. The blood lactate response throughout the experimental session did not differ between ST-LRE and HRE (condition × time interaction P = 0.396: e.g., mean ± standard error of the mean; 8.1 ± 0.5 vs. 8.1 ± 0.5 mM, respectively, immediately after exercise, P = 0.983, d = 0.00). Large-sized decreases in the reverse-Stroop interference scores, which represent improved IC, compared to those before exercise (i.e., baseline and pre-exercise) were observed throughout the 30 min post-exercise recovery period for both ST-LRE and HRE (decreasing rate ≥ 38.8 and 41.4%, respectively, all ds ≥ 0.95). The degree of post-exercise IC improvements was similar between the two protocols (condition × time interaction P = 0.998). These findings suggest that despite the application of a lower exercise load, ST-LRE improves post-exercise IC similarly to HRE, which may be due to the equivalent blood lactate response between the two protocols, in healthy young adults.


Asunto(s)
Entrenamiento de Fuerza , Cognición , Estudios Cruzados , Ejercicio Físico , Humanos , Masculino , Contracción Muscular , Test de Stroop , Adulto Joven
16.
Front Sports Act Living ; 3: 646369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195610

RESUMEN

An acute bout of ischemic preconditioning (IPC) has been reported to increase exercise performance. Nevertheless, the ineffectiveness of acute IPC on exercise performance has also been reported. Similarly, the effect of a shot-term intervention of IPC on exercise performance remains controversial in previous studies. In this study, we examined the effects of short-term IPC intervention on whole and local exercise performances and its-related parameters. Ten healthy young males undertook a 2-weeks IPC intervention (6 days/weeks). The IPC applied to both legs with three episodes of a 5-min ischemia and 5-min reperfusion cycle. Whole-body exercise performance was assessed by peak O2 consumption (VO2: VO2 peak) during a ramp-incremental cycling test. Local exercise performance was assessed by time to task failure during a knee extensor sustained endurance test. A repeated moderate-intensity cycling test was performed to evaluate dynamics of pulmonary VO2 and muscle deoxygenation. The knee extensor maximal voluntary contraction and quadriceps femoris cross-sectional area measurements were performed to explore the potentiality for strength gain and muscle hypertrophy. The whole-body exercise performance (i.e., VO2 peak) did not change before and after the intervention (P = 0.147, Power = 0.09, Effect size = 0.21, 95% confidence interval: -0.67, 1.09). Moreover, the local exercise performance (i.e., time to task failure) did not change before and after the intervention (P = 0.923, Power = 0.05, Effect size = 0.02, 95% confidence interval: -0.86, 0.89). Furthermore, no such changes were observed for all parameters measured using a repeated moderate-intensity cycling test and knee extensor strength and quadriceps femoris size measurements. These findings suggest that a 2-weeks IPC intervention cannot increase whole-body and local exercise performances, corresponding with ineffectiveness on its-related parameters in healthy young adults. However, the statistical analyses of changes in the measured parameters in this study showed insufficient statistical power and sensitivity, due to the small sample size. Additionally, this study did not include control group(s) with placebo and/or nocebo. Therefore, further studies with a larger sample size and control group are required to clarify the present findings.

17.
Sci Rep ; 11(1): 15186, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312456

RESUMEN

This study aimed to examine anterior femoral cartilage morphology before (pre-season) and after (post-season) a 5-month competitive season in collegiate ruby players with and without a previous history of traumatic injury to ligamentous, meniscus, and/or cartilage structures at the knee joint. Using a prospective cohort design, 42 male collegiate rugby players with a previous history of traumatic intracapsular knee joint injury and 124 players without knee injury history were included in this study. Ultrasonography assessments of anterior femoral cartilage were performed before (pre-season) and following a 5-month athletic season (post-season). Rugby players with a history of traumatic knee joint injury had greater lateral condylar thickness (2.37 ± 0.35 mm, p = 0.03), intercondylar thickness (2.51 ± 0.47 mm, p = 0.03), and partial area (44.67 ± 7.28mm2, p = 0.02) compared to control players (lateral = 2.23 ± 0.35 mm, intercondylar = 2.32 ± 0.47 mm, partial area = 41.60 ± 7.26 mm2), regardless of pre-and post-season assessment time points. Pre-season ultrasonography assessment of lateral condylar thickness (2.34 ± 0.47 mm, p = 0.02), medial condylar thickness (2.05 ± 0.43 mm, p = 0.03), and partial area (44.10 ± 9.23 mm2, p = 0.001) were significantly greater than the post-season ultrasonography assessment time point (lateral = 2.26 ± 0.43 mm, medial = 1.98 ± 0.43 mm, partial area = 42.17 ± 8.82 mm2), regardless of group membership. Rugby players with a history of intracapsular knee joint injury displayed altered anterior femoral cartilage size via ultrasonography assessments. Regardless of a presence of injury history, collegiate rugby players showed a decrease in cartilage thickness and partial area following a 5-month competitive season.


Asunto(s)
Traumatismos en Atletas/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Fútbol Americano/lesiones , Fútbol Americano/fisiología , Traumatismos de la Rodilla/diagnóstico por imagen , Adolescente , Traumatismos en Atletas/complicaciones , Traumatismos en Atletas/patología , Cartílago Articular/patología , Estudios de Casos y Controles , Fémur , Humanos , Traumatismos de la Rodilla/complicaciones , Traumatismos de la Rodilla/patología , Masculino , Osteoartritis de la Rodilla/etiología , Estudios Prospectivos , Factores de Riesgo , Estaciones del Año , Factores de Tiempo , Ultrasonografía , Adulto Joven
18.
BMC Sports Sci Med Rehabil ; 13(1): 67, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112228

RESUMEN

PURPOSE: This study examined the relationships of knee extensor strength and quadriceps femoris size with sprint performance in sprinters. METHODS: Fifty-eight male sprinters and 40 body size-matched male non-sprinters participated in this study. The knee extensor isometric and isokinetic strengths were measured using a dynamometer. The isokinetic strength measurements were performed with slow and fast velocities at 60°/s and 180°/s, respectively. The quadriceps femoris muscle volume (MV) was measured using magnetic resonance imaging. The relative knee extensor strengths and quadriceps femoris MV were calculated by normalizing to body mass. RESULTS: Absolute and relative knee extensor strengths during two velocity isokinetic contractions, but not during isometric contraction, were significantly higher in sprinters than in non-sprinters (P = 0.047 to < 0.001 for all). Such a significant difference was also observed for relative quadriceps femoris MV (P = 0.018). In sprinters, there were positive correlations between all three knee extensor strengths and quadriceps femoris MV (r = 0.421 to 0.531, P = 0.001 to < 0.001 for all). The absolute and relative strengths of the fast-velocity isokinetic knee extension correlated negatively with personal best 100-m sprint time (r = -0.477 and -0.409, P = 0.001 and < 0.001, respectively). In contrast, no such significant correlations were observed between absolute and relative quadriceps femoris MVs and personal best 100-m sprint time. CONCLUSIONS: These findings suggest that despite the presence of the relationship between muscle strength and size, the knee extensor strength may be related to superior sprint performance in sprinters independently of the quadriceps femoris muscularity.

19.
Heliyon ; 7(2): e06261, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33665431

RESUMEN

BACKGROUND: The extremely low loads (e.g., <30% of one-repetition maximum) involved in performing resistance exercise are effective in preventing musculoskeletal injury and enhancing exercise adherence in various populations, especially older individuals and patients with chronic diseases. Nevertheless, long-term intervention using this type of protocol is known to have little effects on muscle size and strength adaptations. Despite this knowledge, very low-intensity resistance exercise (VLRE) with slow movement and tonic force generation (ST) significantly increases muscle size and strength. To further explore efficacy of ST-VLRE in the clinical setting, this study examined the effect of ST-VLRE on post-exercise inhibitory control (IC). METHODS: Twenty healthy, young males (age: 21 ± 0 years, body height: 173.4 ± 1.2 cm, body weight: 67.4 ± 2.2 kg) performed both ST-VLRE and normal VLRE in a crossover design. The load for both protocols was set at 30% of one-repetition maximum. Both protocols were programmed with bilateral knee extension for six sets with ten repetitions per set. The ST-VLRE and VLRE were performed with slow (3-sec concentric, 3-sec eccentric, and 1-sec isometric actions with no rest between each repetition) and normal contractile speeds (1-sec concentric and 1-sec eccentric actions and 1-sec rests between each repetition), respectively. IC was assessed using the color-word Stroop task at six time points: baseline, pre-exercise, immediate post-exercise, and every 10 min during the 30-min post-exercise recovery period. RESULTS: The reverse-Stroop interference score, a parameter of IC, significantly decreased immediately after both ST-VLRE and VLRE compared to that before each exercise (decreasing rate >32 and 25%, respectively, vs. baseline and/or pre-exercise for both protocols; all Ps < 0.05). The improved IC following ST-VLRE, but not following VLRE, remained significant until the 20-min post-exercise recovery period (decreasing rate >48% vs. baseline and pre-exercise; both Ps < 0.001). The degree of post-exercise IC improvements was significantly higher for ST-VLRE than for VLRE (P = 0.010 for condition × time interaction effect). CONCLUSIONS: These findings suggest that ST-VLRE can improve post-exercise IC effectively. Therefore, ST-VLRE may be an effective resistance exercise protocol for improving cognitive function.

20.
BMC Res Notes ; 14(1): 74, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632290

RESUMEN

OBJECTIVE: The major purpose of this study was to determine the specific muscle(s) for superior sprint performance in sprinters. The cross sectional areas (CSAs) of ten muscles of the trunk and lower limb were measured using magnetic resonance images in 56 male sprinters and 40 male non-sprinters. In addition to the absolute CSA, to minimize the effect of difference in body size among participants, the relative CSA normalized to body mass was used for analysis of this study. RESULTS: Absolute and relative CSAs of most trunk and lower limb muscles, including the psoas major (PM) and gluteus maximus (GM), were significantly larger in sprinters than in non-sprinters (all P < 0.001, d = 0.91 to 1.82). The absolute and relative CSAs of the PM and GM correlated significantly with personal best 100-m sprint time in sprinters (r = - 0.363 to - 0.388, all P < 0.01). A stepwise multiple regression analysis revealed that both CSAs of absolute PM and relative GM were predictive variables for the personal best 100 m sprint time in sprinters (ß = - 0.289 and - 0.287, respectively, both P < 0.05). These findings suggest that the PM and GM may be specific muscles for superior sprint performance in sprinters.


Asunto(s)
Carrera , Humanos , Extremidad Inferior , Masculino , Músculo Esquelético , Muslo , Torso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA