Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Sci ; 40(5): 871-879, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431921

RESUMEN

Drug delivery systems (DDS) are important methods to maximize drug efficacy by enabling in vivo accumulation at the target site. Liposomes, which are nanoscale vesicles consisting of lipid bilayers, are widely used for clinical DDS. The lipid composition of an intact liposome is a significant factor that directly affects its characteristics and functions. Thus, it is important to develop quantitative or qualitative analytical methods to characterize the lipid composition. Nuclear magnetic resonance (NMR) of phosphorus (31P) is a particularly sensitive and non-destructive approach because phospholipid components have one 31P nucleus per molecule. Here, we demonstrate quantitative observations of individual phospholipids in intact liposomes via solution 31P-NMR. In addition, the 31P linewidths became narrower if the liposomes contained > 10 mol% of polyethylene glycol-(PEGylated) phospholipids, which also contributed to liposome down-sizing. Down-sizing and PEGylation are important strategies for efficient drug delivery. Hence, 31P-NMR can be used to analyze phospholipids in liposomes and related pharmaceutical preparations for quality control.

2.
Genes Cells ; 29(4): 316-327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385597

RESUMEN

Dectin-1 is a well-characterized C-type lectin receptor involved in anti-fungal immunity through the recognition of polysaccharides; however, molecular mechanisms and outcomes initiated through self-recognition have not been fully understood. Here, we purified a water-soluble fraction from mouse liver that acts as a Dectin-1 agonist. To address the physiological relevance of this recognition, we utilized sterile liver inflammation models. The CCl4-induced hepatitis model showed that Dectin-1 deficiency led to reduced inflammation through decreased inflammatory cell infiltration and lower pro-inflammatory cytokine levels. Moreover, in a NASH model induced by streptozotocin and a high-fat diet, hepatic inflammation and fibrosis were ameliorated in Dectin-1-deficient mice. The Dectin-1 agonist activity was increased in the water-soluble fraction from NASH mice, suggesting a potential pathogenic cycle between Dectin-1 activation and hepatitis progression. In vivo administration of the fraction into mice induced hepatic inflammation. These results highlight a role of self-recognition through Dectin-1 that triggers hepatic innate immune responses and contributes to the exacerbation of inflammation in pathogenic settings. Thus, the blockade of this axis may provide a therapeutic option for liver inflammatory diseases.


Asunto(s)
Hepatitis , Lectinas Tipo C , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Inflamación/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Agua
3.
Nat Struct Mol Biol ; 31(2): 275-282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177681

RESUMEN

A wide range of de novo protein structure designs have been achieved, but the complexity of naturally occurring protein structures is still far beyond these designs. Here, to expand the diversity and complexity of de novo designed protein structures, we sought to develop a method for designing 'difficult-to-describe' α-helical protein structures composed of irregularly aligned α-helices like globins. Backbone structure libraries consisting of a myriad of α-helical structures with five or six helices were generated by combining 18 helix-loop-helix motifs and canonical α-helices, and five distinct topologies were selected for de novo design. The designs were found to be monomeric with high thermal stability in solution and fold into the target topologies with atomic accuracy. This study demonstrated that complicated α-helical proteins are created using typical building blocks. The method we developed will enable us to explore the universe of protein structures for designing novel functional proteins.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Estructura Secundaria de Proteína , Conformación Proteica en Hélice alfa
4.
Elife ; 122023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37461319

RESUMEN

Abnormal expansions of GGGGCC repeat sequence in the noncoding region of the C9orf72 gene is the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). The expanded repeat sequence is translated into dipeptide repeat proteins (DPRs) by noncanonical repeat-associated non-AUG (RAN) translation. Since DPRs play central roles in the pathogenesis of C9-ALS/FTD, we here investigate the regulatory mechanisms of RAN translation, focusing on the effects of RNA-binding proteins (RBPs) targeting GGGGCC repeat RNAs. Using C9-ALS/FTD model flies, we demonstrated that the ALS/FTD-linked RBP FUS suppresses RAN translation and neurodegeneration in an RNA-binding activity-dependent manner. Moreover, we found that FUS directly binds to and modulates the G-quadruplex structure of GGGGCC repeat RNA as an RNA chaperone, resulting in the suppression of RAN translation in vitro. These results reveal a previously unrecognized regulatory mechanism of RAN translation by G-quadruplex-targeting RBPs, providing therapeutic insights for C9-ALS/FTD and other repeat expansion diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demencia Frontotemporal/patología , ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/genética , Drosophila/genética
5.
Nat Struct Mol Biol ; 30(8): 1132-1140, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400653

RESUMEN

A fundamental question in protein evolution is whether nature has exhaustively sampled nearly all possible protein folds throughout evolution, or whether a large fraction of the possible folds remains unexplored. To address this question, we defined a set of rules for ß-sheet topology to predict novel αß-folds and carried out a systematic de novo protein design exploration of the novel αß-folds predicted by the rules. The designs for all eight of the predicted novel αß-folds with a four-stranded ß-sheet, including a knot-forming one, folded into structures close to the design models. Further, the rules predicted more than 10,000 novel αß-folds with five- to eight-stranded ß-sheets; this number far exceeds the number of αß-folds observed in nature so far. This result suggests that a vast number of αß-folds are possible, but have not emerged or have become extinct due to evolutionary bias.


Asunto(s)
Pliegue de Proteína , Proteínas , Estructura Secundaria de Proteína , Proteínas/química , Conformación Proteica en Lámina beta
6.
NMR Biomed ; 36(5): e4888, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36468685

RESUMEN

Favipiravir (brand name Avigan), a widely known anti-influenza prodrug, is metabolized by endogenous enzymes of host cells to generate the active form, which exerts inhibition of viral RNA-dependent RNA polymerase activity; first, favipiravir is converted to its phosphoribosylated form, favipiravir-ribofuranosyl-5'-monophosphate (favipiravir-RMP), by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Because this phosphoribosylation reaction is the rate-determining step in the generation of the active metabolite, quantitative and real-time monitoring of the HGPRT-catalyzed reaction is essential to understanding the pharmacokinetics of favipiravir. However, assay methods enabling such monitoring have not been established. 19 F- or 31 P-based nuclear magnetic resonance (NMR) are powerful techniques for observation of intermolecular interactions, chemical reactions, and metabolism of molecules of interest, given that NMR signals of the heteronuclei sensitively reflect changes in the chemical environment of these moieties. Here, we demonstrated direct, sensitive, target-selective, nondestructive, and real-time observation of HGPRT-catalyzed conversion of favipiravir to favipiravir-RMP by performing time-lapse 19 F-NMR monitoring of the fluorine atom of favipiravir. In addition, we showed that 31 P-NMR can be used for real-time observation of the identical reaction by monitoring phosphorus atoms of the phosphoribosyl group of favipiravir-RMP and of the pyrophosphate product of that reaction. Furthermore, we demonstrated that NMR approaches permit the determination of general parameters of enzymatic activity such as Vmax and Km . This method not only can be widely employed in enzyme assays, but also may be of use in the screening and development of new favipiravir-analog antiviral prodrugs that can be phosphoribosylated more efficiently by HGPRT, which would increase the intracellular concentration of the drug's active form. The techniques demonstrated in this study would allow more detailed investigation of the pharmacokinetics of fluorinated drugs, and might significantly contribute to opening new avenues for widespread pharmaceutical studies.


Asunto(s)
Profármacos , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Imagen de Lapso de Tiempo , Amidas , Espectroscopía de Resonancia Magnética , Catálisis
7.
RSC Med Chem ; 13(9): 1100-1111, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36324497

RESUMEN

Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a 19F-NMR screening method optimizing a 19F chemical library focusing on highly soluble monomeric molecules. Our method was successfully applied to four proteins, including protein kinases and a membrane protein. For FKBP12, hit compounds were carefully validated by protein thermal shift analysis, 1H-15N HSQC NMR spectroscopy, and isothermal titration calorimetry to determine dissociation constants and model complex structures. It should be noted that the 1H and 19F saturation transfer difference experiments were crucial to obtaining highly precise model structures. The combination of 19F-NMR analysis and the optimized 19F chemical library enables the modeling of the complex structure made up of a weak binder and its target protein.

8.
Biomol NMR Assign ; 16(2): 267-271, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35616778

RESUMEN

Glutathione peroxidase 4 (GPx4) behaves as an antioxidant enzyme capable of directly reducing peroxidized phospholipids within cell membranes. Recently, GPx4 has attracted attention as a target molecule for cancer therapy because it induces the immortalization of cancer cells suppressing ferroptosis. In this study, to analyze the function and structure of GPx4 by solution NMR, we performed resonance assignments of GPx4 and assigned almost all backbone 1H, 13C, and 15N resonances and most of the side chain 1H and 13C resonances. Using these assignments, the secondary structure of GPx4 was analyzed by the TALOS + program. GPx4 has six helices and seven strands. Then, the backbone dynamics were examined by the {1H}-15N heteronuclear NOE experiment. GPx4 was found to be rigid except for a short loop region. These results will provide basis for functional analysis and the first solution structure determination of GPx4.


Asunto(s)
Antioxidantes , Fosfolípidos , Humanos , Resonancia Magnética Nuclear Biomolecular , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Estructura Secundaria de Proteína
9.
Anal Biochem ; 639: 114521, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906540

RESUMEN

NMR is a powerful tool for characterizing intermolecular interactions at atomic resolution. However, the nature of the complex interactions of membrane-binding proteins makes it difficult to elucidate the interaction mechanisms. Here, we demonstrated that structural and thermodynamic analyses using solution NMR spectroscopy and isothermal titration calorimetry (ITC) can clearly detect a specific interaction between the pleckstrin homology (PH) domain of ceramide transport protein (CERT) and phosphatidylinositol 4-monophosphate (PI4P) embedded in the lipid nanodisc, and distinguish the specific interaction from nonspecific interactions with the bulk surface of the lipid nanodisc. This NMR-ITC hybrid strategy provides detailed characterization of protein-lipid membrane interactions.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Calorimetría/instrumentación , Calorimetría/métodos , Humanos , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/instrumentación , Simulación de Dinámica Molecular , Nanoestructuras/química , Fosfatos de Fosfatidilinositol/química , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Volumetría/instrumentación , Volumetría/métodos
10.
Chemistry ; 27(56): 14092-14099, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34302308

RESUMEN

Covalent linking of side chains provides a method to produce cyclic or stapled peptides that are important in developing peptide-based drugs. A variety of crosslinking formats contribute to fixing the active conformer and prolonging its biological activity under physiological conditions. One format uses the cysteine thiol to participate in crosslinking through nucleophilic thiolate anions or thiyl radicals to form thioether and disulfide bonds. Removal of the S-protection from an S-protected Cys derivative generates the thiol, which functions as a nucleophile. S-Oxidation of a protected Cys allows the formation of a sulfoxide that operates as an umpolung electrophile. Herein, the applicability of S-p-methoxybenzyl Cys sulfoxide (Cys(MBzl)(O)) to the formation of a thioether linkage between tryptophan and Cys has been investigated. The reaction of peptides containing Cys(MBzl)(O) and Trp with trifluoromethanesulfonic acid (TFMSA) or methanesulfonic acid (MSA) in TFA in the presence of guanidine hydrochloride (Gn ⋅ HCl) proceeded to give cyclic or stapled peptides possessing the Cys-Trp thioether linkage. In this reaction, strong acids such as TFMSA or MSA are necessary to activate the sulfoxide. Additionally, Gn ⋅ HCl plays a critical role in producing an electrophilic Cys derivative that combines with the indole by aromatic electrophilic substitution. The findings led us to conclude that the less-electrophilic Cys(MBzl)(O) serves as an acid-activated umpolung of a Cys nucleophile and is useful for S-arylation-mediated peptide cyclization.


Asunto(s)
Cisteína , Sulfóxidos , Ciclización , Péptidos
11.
Protein Sci ; 30(8): 1701-1713, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34046949

RESUMEN

Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol-7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α-synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.


Asunto(s)
Amiloide , Polifenoles , alfa-Sinucleína , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Espectroscopía de Resonancia Magnética , Polifenoles/química , Polifenoles/metabolismo , Conformación Proteica , Solubilidad , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
12.
J Magn Reson ; 322: 106878, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33285399

RESUMEN

13C-direct detection NMR has several advantages compared to proton detection, including a tendency to relax slower and wider chemical shift range. However, the sensitivity of 13C-direct detection is much lower than that of proton detection because of its lower gyromagnetic ratio. In addition, a virtual decoupling procedure is often performed to remove peak splitting in the 13C-direct detection axis, which further reduces the sensitivity to 1/√2. In this study, to enhance the sensitivity of 13C-direct detection experiments, we developed a HCACO-type new pulse sequence in which anti-phase (AP) and in-phase (IP) signals are acquired sequentially in a single scan. The developed experiment was tested on an amino acid (valine) and two proteins (streptococcal protein G B1 domain (GB1) and α-synuclein). The AP and IP spectra were successfully obtained in all cases. Using these spectra, IPAP virtual decoupling was performed, and peak splitting was successfully removed. The sensitivity of the experiment was increased by 1.43, 1.26 and 1.26 times for valine, GB1 and α-synuclein, respectively, compared to the conventional HCACO experiment. In addition, we developed another HCACO-type pulse sequence, where AP and IP signals are simultaneously acquired in a single FID. The sensitivity of the experiment was increased by 1.40 and 1.35 times for valine and GB1, respectively. These methods are potentially applicable to other 13C-direct detection experiments that measure one-bond correlations and will further extend the utility of the 13C-direct detection method, especially for structural analyses of intrinsically disordered proteins.

13.
Proc Natl Acad Sci U S A ; 117(49): 31149-31156, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229587

RESUMEN

Protein design provides a stringent test for our understanding of protein folding. We previously described principles for designing ideal protein structures stabilized by consistent local and nonlocal interactions, based on a set of rules relating local backbone structures to tertiary packing motifs. The principles have made possible the design of protein structures having various topologies with high thermal stability. Whereas nonlocal interactions such as tight hydrophobic core packing have traditionally been considered to be crucial for protein folding and stability, the rules proposed by our previous studies suggest the importance of local backbone structures to protein folding. In this study, we investigated the robustness of folding of de novo designed proteins to the reduction of the hydrophobic core, by extensive mutation of large hydrophobic residues (Leu, Ile) to smaller ones (Val) for one of the designs. Surprisingly, even after 10 Leu and Ile residues were mutated to Val, this mutant with the core mostly filled with Val was found to not be in a molten globule state and fold into the same backbone structure as the original design, with high stability. These results indicate the importance of local backbone structures to the folding ability and high thermal stability of designed proteins and suggest a method for engineering thermally stabilized natural proteins.


Asunto(s)
Conformación Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas/ultraestructura , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación/genética , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Termodinámica
14.
Sci Rep ; 10(1): 2466, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051433

RESUMEN

The in-cell NMR technique offers significant insights into the structure and function of heterologous proteins in the physiological intracellular environment at an atomic resolution. Escherichia coli (E. coli) is one of the most widely used host cells for heterologous protein expression in structural biological studies as well as for in-cell NMR studies to investigate fundamental structural characteristics and the physiochemistry of certain proteins and their intermolecular interactions under physiological conditions. However, in many cases, it is not easy to obtain well-resolved in-cell NMR spectra because the detectability and resolution of these spectra are significantly influenced by intracellular factors such as nonspecific intermolecular interactions. In this study, we re-examined the experimental parameters of E. coli in-cell NMR and found that the detectability and resolution of the NMR spectra clearly depended on the growth phase of the host cells. Furthermore, the detectability and resolution of the E. coli in-cell NMR spectra correlated with the soluble fraction amounts of the expressed target protein. These results indicate that the E. coli in-cell NMR spectrum of a target protein is a useful tool for monitoring the intracellular conditions of the host cell and for establishing the appropriate cultivation conditions for protein overexpression.


Asunto(s)
Escherichia coli/fisiología , Espectroscopía de Resonancia Magnética/métodos , Ambiente , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Límite de Detección , Espectroscopía de Resonancia Magnética/normas
15.
ACS Nano ; 13(8): 8766-8783, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31310506

RESUMEN

Complex amyloid aggregation of amyloid-ß (1-40) (Aß1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aß1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aß1-40 induced by low solvent polarity accelerated cytotoxic Aß1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of ß-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aß1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/ultraestructura , Fragmentos de Péptidos/ultraestructura , Agregación Patológica de Proteínas/genética , Conformación Proteica en Hélice alfa/genética , Enfermedad de Alzheimer/patología , Amiloide/química , Amiloide/genética , Péptidos beta-Amiloides/química , Humanos , Fragmentos de Péptidos/química , Conformación Proteica en Lámina beta/genética , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Solubilidad
16.
Biochem Biophys Res Commun ; 512(1): 22-28, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30853177

RESUMEN

The C-terminal Ig-domain of lamin A plays critical roles in cell function via interaction with proteins, DNA, and chromatin. Mutations in this domain are known to cause various diseases including Emery-Dreifuss muscular dystrophy (EDMD) and familial partial lipodystrophy (FPLD). Here we examined the biophysical and biochemical properties of mutant Ig-domains identified in patients with EDMD and FPLD. EDMD-related mutant Ig-domain showed decreased stability to heat and denaturant. This result was also confirmed by experiments using full-length mutant lamin A, although the decrease in melting temperature was much less than that of the mutant Ig-domain alone. The unstable EDMD Ig-domain disrupted the proper assembly of lamin A, resulting in abnormal paracrystal formation and decreased viscosity. In contrast, FPLD-related mutant Ig-domains were thermally stable, although they lost DNA binding function. Alanine substitution experiments revealed a functional domain of DNA binding in the Ig-domain. Thus, the overall biophysical property of Ig-domains is closely associated with clinical phenotype.


Asunto(s)
Lamina Tipo A/química , Distrofia Muscular de Emery-Dreifuss/metabolismo , Sustitución de Aminoácidos , Fenómenos Biofísicos , ADN/química , ADN/metabolismo , Humanos , Técnicas In Vitro , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Distrofia Muscular de Emery-Dreifuss/genética , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios Proteicos , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Commun Biol ; 1: 58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271940

RESUMEN

Transient interactions in which binding partners retain substantial conformational disorder play an essential role in regulating biological networks, challenging the expectation that specificity demands structurally defined and unambiguous molecular interactions. The monoclonal antibody 6D8 recognises a completely conserved continuous nine-residue epitope within the intrinsically disordered malaria antigen, MSP2, yet it has different affinities for the two allelic forms of this antigen. NMR chemical shift perturbations, relaxation rates and paramagnetic relaxation enhancements reveal the presence of transient interactions involving polymorphic residues immediately C-terminal to the structurally defined epitope. A combination of these experimental data with molecular dynamics simulations shows clearly that the polymorphic C-terminal extension engages in multiple transient interactions distributed across much of the accessible antibody surface. These interactions are determined more by topographical features of the antibody surface than by sequence-specific interactions. Thus, specificity arises as a consequence of subtle differences in what are highly dynamic and essentially non-specific interactions.

18.
J Biol Chem ; 293(28): 11206-11217, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29848549

RESUMEN

Sphingolipids such as ceramide are important constituents of cell membranes. The ceramide transfer protein (CERT) moves ceramide from the endoplasmic reticulum to the Golgi apparatus in a nonvesicular manner. Hyperphosphorylation of the serine-repeat motif (SRM) adjacent to the pleckstrin homology (PH) domain of CERT down-regulates the inter-organelle ceramide transport function of CERT. However, the mechanistic details of this down-regulation remain elusive. Using solution NMR and binding assays, we herein show that a hyperphosphorylation-mimetic CERT variant in which 10 serine/threonine residues of SRM had been replaced with glutamate residues (the 10E variant) displays an intramolecular interaction between SRM and positively charged regions of the PH domain, which are involved in the binding of this domain to phosphatidylinositol 4-monophosphate (PI4P). Of note, the binding of the PH domain to PI4P-embedded membranes was attenuated by the SRM 10E substitutions in cell-free assays. Moreover, the 10E substitutions reduced the Golgi-targeting activity of the PH-SRM construct in living cells. These results indicate that hyperphosphorylated SRM directly interacts with the surface of the PH domain in an intramolecular manner, thereby decreasing the PI4P-binding activity of the PH domain. In light of these findings, we propose that the hyperphosphorylation of SRM may trigger the dissociation of CERT from the Golgi apparatus, resulting in a functionally less active conformation of CERT.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Ceramidas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Secuencia de Bases , Transporte Biológico , Proteínas Sanguíneas/química , Membrana Celular/química , Ceramidas/química , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Fosfatidilinositoles/química , Fosfoproteínas/química , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Serina/química
19.
Biochemistry ; 57(26): 3576-3589, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29924600

RESUMEN

Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13C atoms experience less isotope scrambling than the main-chain 15N atoms do. However, little is known about the side-chain 13C atoms. Here, the 13C scrambling profiles of the Cα and side-chain carbons were investigated for 15N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13Cα and 13C side-chain labeling than in 15N labeling. We utilized this reduced scrambling-prone character of 13C as a simple and efficient method for amino acid selective 13C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1H-15N heteronuclear single-quantum coherence signals of the 15N scrambling-prone amino acid were also easily filtered using 15N-{13Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.


Asunto(s)
Aminoácidos/análisis , Proteínas de Escherichia coli/química , Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono/análisis , Marcaje Isotópico , Isótopos de Nitrógeno/análisis
20.
Biochim Biophys Acta Biomembr ; 1860(9): 1741-1764, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29709613

RESUMEN

The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-ß peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic ß cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...