RESUMEN
BACKGROUND: There are limited data on the use of stereotactic radiosurgery (SRS) for pediatric patients. The aim of this systematic review was to summarize indications and outcomes specific to pediatric cranial SRS to inform consensus guidelines on behalf of the International Stereotactic Radiosurgery Society (ISRS). METHODS: A systematic review, using the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), analyzed English-language articles on SRS, published between 1989 and 2021, that included outcomes for at least 5 pediatric patients. MEDLINE database terms included tumor types and locations, and radiosurgical and age-specific terms. We excluded nonclinical reports, expert opinions, commentaries, and review articles. Meta-regressions for associations with local control were performed for medulloblastoma, craniopharyngioma, ependymoma, glioma, and arteriovenous malformation (AVM). RESULTS: Of the 113 articles identified for review, 68 met the inclusion criteria. These articles described approximately 400 pediatric patients with benign and malignant brain tumors and 5119 with AVMs who underwent cranial SRS. The rates of local control for benign tumors, malignant tumors, and AVMs were 89% (95% CI, 82%-95%), 71% (95% CI, 59%-82%), and 65% (95% CI, 60%-69%), respectively. No significant associations were identified for local control with patient-, tumor-, or treatment-related variables. CONCLUSIONS: This review is the first to summarize outcomes specific to SRS for pediatric brain tumors and AVMs. Although data reporting is limited for pediatric patients, SRS appears to provide acceptable rates of local control. We present ISRS consensus guidelines to inform the judicious use of cranial SRS for pediatric patients.
RESUMEN
OBJECTIVE: The International Stereotactic Radiosurgery Society (ISRS) aims to establish evidence-based guidelines for single-fraction stereotactic radiosurgery (SRS) in treating intracranial cavernous malformations. METHODS: We conducted a systematic review following PRISMA and MOOSE guidelines, searching electronic databases up to January 2024 to assess SRS's impact on post-treatment hemorrhage rates. Pooled risk ratios (RR) and confidence intervals were utilized to quantify this effect, along with assessments of lesion volume changes, seizure outcomes, and SRS-related adverse effects. RESULTS: Our meta-analysis included 32 studies with 2672 patients. A significant decrease in annual hemorrhage rates was observed post-treatment (RR=0.17), with rates of RR=0.29 in the first 2 years and RR=0.11 thereafter. Hemorrhage rates significantly differed before and after 2 years post-SRS (RR=0.36). Among epileptic patients, 20.2% had epilepsy pre-treatment, and 49.9% were seizure-free post-SRS, while 30.6% experienced reduced seizure frequency. Lesion volume changes showed a reduction in 46.9%, stability in 47.1%, and an increase in 6.7%. Symptomatic radiation effects affected 8% of patients. Subgroup analysis revealed symptomatic change rates of 6% at doses ≤13Gy compared to 9% at doses >13Gy. Permanent clinical deficits were rare (2%). CONCLUSION: This meta-analysis suggests SRS is an effective intervention for intracranial cavernous malformations, significantly reducing hemorrhage rates and improving seizure outcomes. ISRS practice guidelines are provided.
RESUMEN
Purpose: To compare plan quality among photon volumetric arc therapy (VMAT), Gamma Knife, and three different proton beam modalities. Methods: Fifty-five brain lesions from 20 patients were planned with three different proton spot size ranges of cyclotron-generated proton beams, CPBs (spot size σ: 2.7-7.0 mm), linear accelerator proton beams, LPBs (σ: 2.9-5.5 mm), and linear accelerator proton minibeams, LPMBs (σ: 0.9-3.9 mm), with and without apertures and compared against photon VMAT and Gamma Knife plans. Dose coverage to each lesion for each proton and photon plan was set to 99% of the GTV receiving the prescription (Rx) dose. All proton plans used ±2 mm setup uncertainty and ±2% range uncertainty in robust evaluation to achieve V100%Rx > 95% of the GTV. Apertures were applied to proton beams irradiating tumors <1 cm3 volume and located <2.5 cm depth. Conformity index (CI), gradient index (GI), V12 Gy, V4.5 Gy, and mean brain dose were compared across all plan types. The Wilcoxon signed rank test was utilized to determine statistical significance of dosimetric results compared between photon and proton plans. Results: When compared to CPB generated plans, average CI and GI were significantly better for the LPB and LPMB plans. Aperture-based IMPT plans showed improvement from Gamma Knife for all dosimetric metrics. Aperture-based IMPT plans also showed improvement in all dosimetric metrics for shallow tumors (d < 2.5 cm) when compared with non-aperture-based plans. Conclusion: The LPB and LPMB stand as excellent alternatives to CPB or photon therapy and significantly increase the preservation of normal tissue.
RESUMEN
BACKGROUND AND OBJECTIVES: Consensus guidelines do not exist to guide the role of stereotactic radiosurgery (SRS) in the management of patients with Spetzler-Martin Grade III-V arteriovenous malformations (AVMs). We sought to establish SRS practice guidelines for Grade III-V AVMs based on a critical systematic review of the published literature. METHODS: A Preferred Reporting Items for Systematic Reviews and Meta-Analyses-compliant search of Medline, Embase, and Scopus, 1986 to 2023, for publications reporting post-SRS outcomes in ≥10 Grade III-V AVMs with the median follow-up ≥24 months was performed. Primary end points were AVM obliteration and post-SRS hemorrhage. Secondary end points included dosimetric variables, Spetzler-Martin parameters, and neurological outcome. RESULTS: : In total, 2463 abstracts were screened, 196 manuscripts were reviewed, and 9 met the strict inclusion criteria. The overall sample of 1634 AVMs consisted of 1431 Grade III (88%), 186 Grade IV (11%), and 11 Grade V lesions (1%). Total median post-SRS follow-up was 53 months for Grade III and 43 months for Grade IV-V AVMs (ranges, 2-290; 12-262). For Grade III AVMs, the crude obliteration rate was 72%, and among Grade IV-V lesions, the crude obliteration rate was 46%. Post-SRS hemorrhage was observed in 7% of Grade III compared with 17% of Grade IV-V lesions. Major permanent deficits or death from hemorrhage or radiation-induced complications occurred in 86 Grade III (6%) and 22 Grade IV-V AVMs (12%). CONCLUSION: Most patients with Spetzler-Martin Grade III AVMs have favorable SRS treatment outcomes; however, the obliteration rate for Grade IV-V AVMs is less than 50%. The available studies are heterogenous and lack nuanced, long-term, grade-specific outcomes.
RESUMEN
BACKGROUND: Tumor Treating Fields (TTFields) are alternating electric fields that disrupt cancer cell processes. TTFields therapy is approved for recurrent glioblastoma (rGBM), and newly-diagnosed (nd) GBM (with concomitant temozolomide for ndGBM; US), and for grade IV glioma (EU). We present an updated global, post-marketing surveillance safety analysis of patients with CNS malignancies treated with TTFields therapy. METHODS: Safety data were collected from routine post-marketing activities for patients in North America, Europe, Israel, and Japan (October 2011-October 2022). Adverse events (AEs) were stratified by age, sex, and diagnosis. RESULTS: Overall, 25,898 patients were included (diagnoses: ndGBM [68%], rGBM [26%], anaplastic astrocytoma/oligodendroglioma [4%], other CNS malignancies [2%]). Median (range) age was 59 (3-103) years; 66% patients were male. Most (69%) patients were 18-65 years; 0.4% were < 18 years; 30% were > 65 years. All-cause and TTFields-related AEs occurred in 18,798 (73%) and 14,599 (56%) patients, respectively. Most common treatment-related AEs were beneath-array skin reactions (43%), electric sensation (tingling; 14%), and heat sensation (warmth; 12%). Treatment-related skin reactions were comparable in pediatric (39%), adult (42%), and elderly (45%) groups, and in males (41%) and females (46%); and similar across diagnostic subgroups (ndGBM, 46%; rGBM, 34%; anaplastic astrocytoma/oligodendroglioma, 42%; other, 40%). No TTFields-related systemic AEs were reported. CONCLUSIONS: This long-term, real-world analysis of > 25,000 patients demonstrated good tolerability of TTFields in patients with CNS malignancies. Most therapy-related AEs were manageable localized, non-serious skin events. The TTFields therapy safety profile remained consistent across subgroups (age, sex, and diagnosis), indicative of its broad applicability.
Asunto(s)
Terapia por Estimulación Eléctrica , Vigilancia de Productos Comercializados , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Adolescente , Niño , Adulto Joven , Anciano de 80 o más Años , Preescolar , Terapia por Estimulación Eléctrica/efectos adversos , Terapia por Estimulación Eléctrica/métodos , Neoplasias del Sistema Nervioso Central/terapia , Japón/epidemiologíaRESUMEN
BACKGROUND AND OBJECTIVES: Repeat stereotactic radiosurgery (SRS) for residual arteriovenous malformations (AVMs) can be considered as a salvage approach after failure of initial SRS. There are no published guidelines regarding patient selection, timing, or SRS parameters to guide clinical practice. This systematic review aimed to review outcomes and complications from the published literature to inform practice recommendations provided on behalf of the International Stereotactic Radiosurgery Society. METHODS: We performed a systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A comprehensive search of MEDLINE, Scopus, Web of Science, and Embase was conducted. Fourteen studies with 925 patients met the inclusion criteria. Patients were treated between 1985 and 2022. All studies were retrospective, except for one prospective cohort. RESULTS: The median patient age at repeat SRS ranged from 32 to 60 years. Four studies (630 patients) reported detailed information on Spetzler-Martin grade at the time of repeat SRS; 12.54% of patients had Spetzler-Martin grade I AVMs (79/630 patients), 46.51% had grade II (293/630), 34.92% had grade III (220/630), 5.08% had grade IV (32/630), and 0.95% had grade V (6/630). The median prescription doses varied between 15 and 25 Gy (mean, 13.06-22.8 Gy). The pooled overall obliteration rate at the last follow-up after repeat SRS was 59% (95% CI 51%-67%) with a median follow-up between 21 and 50 months. The pooled hemorrhage incidence at the last follow-up was 5% (95% CI 4%-7%), and the pooled overall radiation-induced change incidence was 12% (95% CI 7%-20%). CONCLUSION: For an incompletely obliterated AVM, repeat radiosurgery after 3 to 5 years of follow-up from the first SRS provides a reasonable benefit to the risk profile. After repeat SRS, obliteration is achieved in the majority of patients. The risk of hemorrhage or radiation-induced change appears low, and International Stereotactic Radiosurgery Society recommendations are presented.
RESUMEN
BACKGROUND AND OBJECTIVES: We present our experience in the management of symptomatic vertebral hemangiomas with epidural extension (SVHEE) using spine stereotactic radiosurgery (SSRS). METHODS: An Institutional Review Board approved retrospective review of all SVHEE patients treated with SSRS at our institution (2007-2022) was performed. Baseline patient demographics, clinical presentation, lesion volume, and Bilsky grade (to directly evaluate the epidural component) were determined. Clinical and radiographic response and treatment outcomes were subsequently evaluated at first (â¼6 months) and final follow-up. RESULTS: Fourteen patients with SVHEE underwent SSRS (16-18 Gy/1-fraction); the mean follow-up was 24 months. The median lesion volume (cc) was 36.9 (range: 7.02-94.1), 31.5 (range: 6.53-69.7), and 25.15 (range: 6.01-52.5) at pre-SSRS, first, and final follow-up, respectively. Overall volume reduction was seen in the last follow-up in all 14 patients, median 29.01% (range: 6.58%-71.58%). Bilsky score was stable or improved in all patients at the last follow-up when compared with pre-SSRS score. Patients who underwent both surgical decompression and SSRS (n = 9): 8 had improved myelopathic symptoms and pain and 1 had stable radiculopathy postintervention. In the 5 patients treated with SSRS monotherapy, 2 had stable radicular pain and the other 3 improved pain and numbness. No patients experienced adverse outcomes. CONCLUSION: To our knowledge, this represents the largest series of SVHEE patients treated with SSRS, either as monotherapy or part of a multimodal/separation surgery treatment approach. We demonstrate that SSRS represents a potentially safe and effective treatment option in these patients. However, larger prospective studies and longer follow-ups are necessary to further assess the role, durability, and toxicity of SSRS in the management of these patients.
Asunto(s)
Hemangioma , Radiocirugia , Neoplasias de la Columna Vertebral , Humanos , Radiocirugia/métodos , Femenino , Masculino , Hemangioma/cirugía , Hemangioma/diagnóstico por imagen , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias de la Columna Vertebral/cirugía , Neoplasias de la Columna Vertebral/diagnóstico por imagen , Neoplasias de la Columna Vertebral/radioterapia , Adulto , Anciano , Resultado del Tratamiento , Espacio Epidural/cirugía , Espacio Epidural/patología , Espacio Epidural/diagnóstico por imagenRESUMEN
BACKGROUND: Single-session stereotactic radiosurgery (SRS) or surgical resection alone for brain metastases larger than 2 cm results in unsatisfactory local control. We conducted a phase I trial for brain metastases(>2 cm) to determine the safety of preoperative SRS at escalating doses. METHODS: Radiosurgery dose was escalated at 3 Gy increments for 3 cohorts based on maximum tumor dimension starting at: 18 Gy for >2-3 cm, 15 Gy for >3-4 cm, and 12 Gy for >4-6 cm. Dose-limiting toxicity was defined as grade III or greater acute toxicity. RESULTS: A total of 35 patients/36 lesions were enrolled. For tumor size >2-3 cm, patients were enrolled up to the second dose level (21 Gy); for >3-4 cm and >4-6 cm cohorts the third dose level (21 and 18 Gy, respectively) was reached. There were 2 DLTs in the >3-4 cm arm at 21 Gy. The maximum tolerated dose of SRS for >2-3 cm was not reached; and was 18 Gy for both >3-4 cm arm and >4-6 cm arm. With a median follow-up of 64.0 months, the 6- and 12-month local control rates were 85.9% and 76.6%, respectively. One patient developed grade 3 radiation necrosis at 5 months. The 2-year rate of leptomeningeal disease (LMD) was 0%. CONCLUSIONS: Preoperative SRS with dose escalation followed by surgical resection for brain metastases greater than 2 cm in size demonstrates acceptable acute toxicity. The phase II portion of the trial will be conducted at the maximum tolerated SRS doses.
Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Radiocirugia/métodos , Radiocirugia/efectos adversos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Persona de Mediana Edad , Masculino , Femenino , Anciano , Adulto , Dosis Máxima Tolerada , Dosificación Radioterapéutica , Estudios de Seguimiento , Cuidados Preoperatorios , Anciano de 80 o más AñosRESUMEN
Radiation therapy with stereotactic radiosurgery (SRS) or whole brain radiation therapy is a mainstay of treatment for patients with brain metastases. The use of SRS in the management of brain metastases is becoming increasingly common and provides excellent local control. Cerebral radiation necrosis (RN) is a late complication of radiation treatment that can be seen months to years following treatment and is often indistinguishable from tumor progression on conventional imaging. In this review article, we explore risk factors associated with the development of radiation necrosis, advanced imaging modalities used to aid in diagnosis, and potential treatment strategies to manage side effects.
Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Humanos , Neoplasias Encefálicas/radioterapia , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/etiología , Traumatismos por Radiación/terapia , Radiocirugia/efectos adversos , Factores de Riesgo , NecrosisRESUMEN
PURPOSE: External beam radiotherapy is a complex process, involving timely coordination among multiple teams. The aim of this study is to report our experience of establishing a standardized workflow and using quantitative data and metrics to manage the time-to-treatment initiation (TTI). METHODS AND MATERIALS: Starting in 2014, we established a standard process in a radiation oncology-specific electronic medical record system (RO-EMR) for patients receiving external beam radiation therapy in our department, aiming to measure the time interval from simulation to treatment initiation, defined as TTI, for radiation oncology. TTI data were stratified according to the following treatment techniques: three-dimensional (3D) conformal therapy, intensity-modulated radiotherapy (IMRT), and stereotactic body radiotherapy (SBRT). Statistical analysis was performed with the Mann-Whitney test for the respective metrics of aggregate data for the initial period 2012- 2015 (PI) and the later period 2016-2019 (PII). RESULT: Over 8 years, the average annual number of treatments for PI and PII were 1760 and 2357 respectively, with 3D, IMRT, and SBRT treatments accounting for 53, 29, 18% and 44, 34, 22%, respectively, of the treatment techniques. The median TTI for 3D, IMRT, and SBRT for PI and PII were 1, 6, 7, and 1, 5, 7 days, respectively, while the 90th percentile TTI for the three techniques in both periods were 5, 9, 11 and 4, 9, 10 days, respectively. From the aggregate data, the TTI was significantly reduced (p = 0.0004, p < 0.0001, p < 0.0001) from PI to PII for the three treatment techniques. CONCLUSION: Establishing a standardized workflow and frequently measuring TTI resulted in shortening the TTI during the early years (in PI) and maintaining the established TTI in the subsequent years (in PII).
Asunto(s)
Radiocirugia , Radioterapia Conformacional , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Flujo de Trabajo , Radioterapia Conformacional/métodos , Radioterapia de Intensidad Modulada/métodos , Radiocirugia/métodosRESUMEN
PURPOSE: Whole-brain radiation therapy (WBRT) is a common treatment for brain metastases and is frequently associated with decline in neurocognitive functioning (NCF). The e4 allele of the apolipoprotein E (APOE) gene is associated with increased risk of Alzheimer disease and NCF decline associated with a variety of neurologic diseases and insults. APOE carrier status has not been evaluated as a risk factor for onset time or extent of NCF impairment in patients with brain metastases treated with WBRT. METHODS AND MATERIALS: NRG/Radiation Therapy Oncology Group 0614 treated adult patients with brain metastases with 37.5 Gy of WBRT (+/- memantine), performed longitudinal NCF testing, and included an optional blood draw for APOE analysis. NCF test results were compared at baseline and over time with mixed-effects models. A cause-specific Cox model for time to NCF failure was performed to assess the effects of treatment arm and APOE carrier status. RESULTS: APOE results were available for 45% of patients (n = 227/508). NCF did not differ by APOE e4 carrier status at baseline. Mixed-effects modeling showed that APOE e4 carriers had worse memory after WBRT compared with APOE e4 noncarriers (Hopkins Verbal Learning Test-Revised total recall [least square mean difference, 0.63; P = .0074], delayed recognition [least square mean difference, 0.75; P = .023]). However, APOE e4 carrier status was not associated with time to NCF failure (hazard ratio, 0.86; 95% CI, 0.60-1.23; P = .40). Memantine delayed the time to NCF failure, regardless of carrier status (hazard ratio, 0.72; 95% CI, 0.52-1.01; P = .054). CONCLUSIONS: APOE e4 carriers with brain metastases exhibited greater decline in learning and memory, executive function, and the Clinical Trial Battery Composite score after treatment with WBRT (+/- memantine), without acceleration of onset of difference in time to NCF failure.
Asunto(s)
Neoplasias Encefálicas , Memantina , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/genética , Cognición/efectos de la radiación , Irradiación Craneana/efectos adversos , Genotipo , Heterocigoto , Memantina/uso terapéutico , Modelos de Riesgos ProporcionalesRESUMEN
BACKGROUND: The choice of an appropriate strategy for intracanalicular vestibular schwannoma (ICVS) is still debated. We conducted a systematic review and meta-analysis with the aim to compare treatment outcomes amongst management strategies (conservative surveillance (CS), microsurgical resection (MR), or stereotactic radiosurgery (SRS)) aiming to inform guideline recommendations on behalf of the International Stereotactic Radiosurgery Society (ISRS). METHODS: Using PRISMA guidelines, we reviewed manuscripts published between January 1990 and October 2021 referenced in PubMed or Embase. Inclusion criteria were peer-reviewed clinical studies or case series reporting a cohort of ICVS managed with CS, MR, or SRS. Primary outcome measures included tumor control, the need for additional treatment, hearing outcomes, and posttreatment neurological deficits. These were pooled using meta-analytical techniques and compared using meta-regression with random effect. RESULTS: Forty studies were included (2371 patients). The weighted pooled estimates for tumor control were 96% and 65% in SRS and CS series, respectively (Pâ <â .001). Need for further treatment was reported in 1%, 2%, and 25% for SRS, MR, and CS, respectively (Pâ =â .001). Hearing preservation was reported in 67%, 68%, and 55% for SRS, MR, and CS, respectively (Pâ =â .21). Persistent facial nerve deficit was reported in 0.1% and 10% for SRS and MR series, respectively (Pâ =â .01). CONCLUSIONS: SRS is a noninvasive treatment with at least equivalent rates of tumor control and hearing preservation as compared to MR, with the caveat of better facial nerve preservation. As compared to CS, upfront SRS is an effective treatment in achieving tumor control with similar rates of hearing preservation.
Asunto(s)
Neuroma Acústico , Radiocirugia , Humanos , Neuroma Acústico/cirugía , Neuroma Acústico/etiología , Radiocirugia/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Guías de Práctica Clínica como AsuntoRESUMEN
PURPOSE: To perform a systematic review of literature specific to single-fraction stereotactic radiosurgery (SRS) for large vestibular schwannomas (VS), maximum diameter ≥ 2.5 cm and/or classified as Koos Grade IV, and to present consensus recommendations on behalf of the International Stereotactic Radiosurgery Society (ISRS). METHODS: The Medline and Embase databases were used to apply the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. We considered eligible prospective and retrospective studies, written in the English language, reporting treatment outcomes for large VS; SRS for large post-operative tumors were analyzed in aggregate and separately. RESULTS: 19 of the 229 studies initially identified met the final inclusion criteria. Overall crude rate of tumor control was 89% (93.7% with no prior surgery vs 87.7% with prior surgery). Rates of salvage microsurgical resection, need for shunt, and additional SRS in all series versus those with no prior surgery were 9.6% vs 3.3%, 4.7% vs 6.4% and 1% vs 0.9%, respectively. Rates of facial palsy and hearing preservation in all series versus those with no prior surgery were 1.3% vs 3.4% and 34.2% vs 40.4%, respectively. CONCLUSIONS: Upfront SRS resulted in high rates of tumor control with acceptable rates of facial palsy and hearing preservation as compared to the results in those series including patients with prior surgery (level C evidence). Therefore, although large VS are considered classic indication for microsurgical resection, upfront SRS can be considered in selected patients and we recommend a prescribed marginal dose from 11 to 13 Gy (level C evidence).
Asunto(s)
Parálisis Facial , Neuroma Acústico , Radiocirugia , Humanos , Radiocirugia/métodos , Estudios Retrospectivos , Neuroma Acústico/radioterapia , Neuroma Acústico/cirugía , Neuroma Acústico/patología , Estudios Prospectivos , Parálisis Facial/cirugía , Resultado del Tratamiento , Estudios de SeguimientoRESUMEN
BACKGROUND AND OBJECTIVE: As novel systemic therapies allow patients to live longer with cancer, the risk of developing central nervous system (CNS) metastases increases and providers will more frequently encounter emergent presentation of brain metastases (BM) and leptomeningeal metastases (LM). Management of these metastases requires appropriate work-up and well-coordinated multidisciplinary care. We set out to perform a review of emergent radiotherapy (RT) for CNS metastases, specifically focusing on BM and LM. METHODS: We review the appropriate pathways for workup and initial management of BM and LM, while reviewing the literature supporting emergent treatment of these entities with surgery, systemic anti-cancer therapy, and RT. To inform this narrative review, literature searches in PubMed and Google Scholar were conducted, with preference given to articles employing modern RT techniques, when applicable. Due to the paucity of high-quality evidence for management of BM and LM in the emergent setting, discussion was supplemented by the authors' expert commentary. KEY CONTENT AND FINDINGS: This work highlights the importance of surgical evaluation, particularly for patients presenting with significant mass effect, hemorrhagic metastases, or increased intracranial pressure. We review the rare situations where emergent initiation of systemic anti-cancer therapy is indicated. When defining the role of RT, we review factors guiding selection of appropriate modality, treatment volume, and dose-fractionation. Generally, 2D- or 3D-conformal treatment techniques prescribed as 30 Gy in 10 fractions or 20 Gy in 5 fractions, should be employed in the emergent setting. CONCLUSIONS: Patients with BM and LM present from a diverse array of clinical situations, requiring well-coordinated multidisciplinary management, and there is a paucity of high-quality evidence guiding such management decisions. This narrative review aims to more thoroughly prepare providers for the challenging situation of emergent management of BM and LM.
Asunto(s)
Neoplasias Encefálicas , Carcinomatosis Meníngea , Humanos , Carcinomatosis Meníngea/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , EncéfaloRESUMEN
Objective.Radiation-induced cell death is a complex process influenced by physical, chemical and biological phenomena. Although consensus on the nature and the mechanism of the bystander effect were not yet made, the immune process presumably plays an important role in many aspects of the radiotherapy including the bystander effect. A mathematical model of immune response during and after radiation therapy is presented.Approach.Immune response of host body and immune suppression of tumor cells are modelled with four compartments in this study; viable tumor cells, T cell lymphocytes, immune triggering cells, and doomed cells. The growth of tumor was analyzed in two distinctive modes of tumor status (immune limited and immune escape) and its bifurcation condition.Main results.Tumors in the immune limited mode can grow only up to a finite size, named as terminal tumor volume analytically calculated from the model. The dynamics of the tumor growth in the immune escape mode is much more complex than the tumors in the immune limited mode especially when the status of tumor is close to the bifurcation condition. Radiation can kill tumor cells not only by radiation damage but also by boosting immune reaction.Significance.The model demonstrated that the highly heterogeneous dose distribution in spatially fractionated radiotherapy (SFRT) can make a drastic difference in tumor cell killing compared to the homogeneous dose distribution. SFRT cannot only enhance but also moderate the cell killing depending on the immune response triggered by many factors such as dose prescription parameters, tumor volume at the time of treatment and tumor characteristics. The model was applied to the lifted data of 67NR tumors on mice and a sarcoma patient treated multiple times over 1200 days for the treatment of tumor recurrence as a demonstration.
Asunto(s)
Neoplasias , Ratones , Animales , Neoplasias/radioterapia , Fraccionamiento de la Dosis de Radiación , Inmunidad , Radioterapia/métodosRESUMEN
INTRODUCTION: Traditionally, brain metastases have been treated with stereotactic radiosurgery (SRS), whole-brain radiation (WBRT), and/or surgical resection. Non-small cell lung cancers (NSCLC), over half of which carry EGFR mutations, are the leading cause of brain metastases. EGFR-directed tyrosine kinase inhibitors (TKI) have shown promise in NSCLC; but their utility in NSCLC brain metastases (NSCLCBM) remains unclear. This work sought to investigate whether combining EGFR-TKI with WBRT and/or SRS improves overall survival (OS) in NSCLCBM. METHODS: A retrospective review of NSCLCBM patients diagnosed during 2010-2019 at a tertiary-care US center was performed and reported following the 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic and histopathological characteristics, molecular attributes, treatment strategies, and clinical outcomes were collected. Concurrent therapy was defined as the combination of EGFR-TKI and radiotherapy given within 28 days of each other. RESULTS: A total of 239 patients with EGFR mutations were included. Of these, 32 patients had been treated with WBRT only, 51 patients received SRS only, 36 patients received SRS and WBRT only, 18 were given EGFR-TKI and SRS, and 29 were given EGFR-TKI and WBRT. Median OS for the WBRT-only group was 3.23 months, for SRS + WBRT it was 3.17 months, for EGFR-TKI + WBRT 15.50 months, for SRS only 21.73 months, and for EGFR-TKI + SRS 23.63 months. Multivariable analysis demonstrated significantly higher OS in the SRS-only group (HR = 0.38, 95% CI 0.17-0.84, p = 0.017) compared to the WBRT reference group. There were no significant differences in overall survival for the SRS + WBRT combination cohort (HR = 1.30, 95% CI = 0.60, 2.82, p = 0.50), EGFR-TKIs and WBRT combination cohort (HR = 0.93, 95% CI = 0.41, 2.08, p = 0.85), or the EGFR-TKI + SRS cohort (HR = 0.46, 95% CI = 0.20, 1.09, p = 0.07). CONCLUSIONS: NSCLCBM patients treated with SRS had a significantly higher OS compared to patients treated with WBRT-only. While sample-size limitations and investigator-associated selection bias may limit the generalizability of these results, phase II/III clinicals trials are warranted to investigate synergistic efficacy of EGFR-TKI and SRS.
RESUMEN
PURPOSE: Distinguishing radiation necrosis from tumor progression among patients with brain metastases previously treated with stereotactic radiosurgery represents a common diagnostic challenge. We performed a prospective pilot study to determine whether PET/CT with 18F-fluciclovine, a widely available amino acid PET radiotracer, repurposed intracranially, can accurately diagnose equivocal lesions. METHODS: Adults with brain metastases previously treated with radiosurgery presenting with a follow-up tumor-protocol MRI brain equivocal for radiation necrosis versus tumor progression underwent an 18F-fluciclovine PET/CT of the brain within 30 days. The reference standard for final diagnosis consisted of clinical follow-up until multidisciplinary consensus or tissue confirmation. RESULTS: Of 16 patients imaged from 7/2019 to 11/2020, 15 subjects were evaluable with 20 lesions (radiation necrosis, n = 16; tumor progression, n = 4). Higher SUVmax statistically significantly predicted tumor progression (AUC = 0.875; p = 0.011). Lesion SUVmean (AUC = 0.875; p = 0.018), SUVpeak (AUC = 0.813; p = 0.007), and SUVpeak-to-normal-brain (AUC = 0.859; p = 0.002) also predicted tumor progression, whereas SUVmax-to-normal-brain (p = 0.1) and SUVmean-to-normal-brain (p = 0.5) did not. Qualitative visual scores were significant predictors for readers 1 (AUC = 0.750; p < 0.001) and 3 (AUC = 0.781; p = 0.045), but not for reader 2 (p = 0.3). Visual interpretations were significant predictors for reader 1 (AUC = 0.898; p = 0.012) but not for reader 2 (p = 0.3) or 3 (p = 0.2). CONCLUSIONS: In this prospective pilot study of patients with brain metastases previously treated with radiosurgery presenting with a contemporary MRI brain with a lesion equivocal for radiation necrosis versus tumor progression, 18F-fluciclovine PET/CT repurposed intracranially demonstrated encouraging diagnostic accuracy, supporting the pursuit of larger clinical trials which will be necessary to establish diagnostic criteria and performance.
Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Adulto , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiocirugia/efectos adversos , Proyectos Piloto , Estudios Prospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/etiología , Necrosis/diagnóstico por imagen , Necrosis/etiologíaRESUMEN
Introduction: Up to 50% of non-small cell lung cancer (NSCLC) harbor EGFR alterations, the most common etiology behind brain metastases (BMs). First-generation EGFR-directed tyrosine kinase inhibitors (EGFR-TKI) are limited by blood-brain barrier penetration and T790M tumor mutations, wherein third-generation EGFR-TKIs, like Osimertinib, have shown greater activity. However, their efficacy has not been well-studied in later therapy lines in NSCLC patients with BMs (NSCLC-BM). We sought to compare outcomes of NSCLC-BM treated with either first- or third-generation EGFR-TKIs in first-line and 2nd-to-5th-line settings. Methods: A retrospective review of NSCLC-BM patients diagnosed during 2010-2019 at Cleveland Clinic, Ohio, US, a quaternary-care center, was performed and reported following 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic, histopathological, molecular characteristics, and clinical outcomes were collected. Primary outcomes were median overall survival (mOS) and progression-free survival (mPFS). Multivariable Cox proportional hazards modeling and propensity score matching were utilized to adjust for confounders. Results: 239 NSCLC-BM patients with EGFR alterations were identified, of which 107 received EGFR-TKIs after diagnosis of BMs. 77.6% (83/107) received it as first-line treatment, and 30.8% (33/107) received it in later (2nd-5th) lines of therapy, with nine patients receiving it in both settings. 64 of 107 patients received first-generation (erlotinib/gefitinib) TKIs, with 53 receiving them in the first line setting and 13 receiving it in the 2nd-5th lines of therapy. 50 patients received Osimertinib as third-generation EGFR-TKI, 30 in first-line, and 20 in the 2nd-5th lines of therapy. Univariable analysis in first-line therapy demonstrated mOS of first- and third-generation EGFR-TKIs as 18.2 and 19.4 months, respectively (p = 0.57), while unadjusted mPFS of first- and third-generation EGFR-TKIs was 9.3 and 13.8 months, respectively (p = 0.14). In 2nd-5th line therapy, for first- and third-generation EGFR-TKIs, mOS was 17.3 and 11.9 months, (p = 0.19), while mPFS was 10.4 and 6.08 months, respectively (p = 0.41). After adjusting for age, performance status, presence of extracranial metastases, whole-brain radiotherapy, and presence of leptomeningeal metastases, hazard ratio (HR) for OS was 1.25 (95% CI 0.63-2.49, p = 0.52) for first-line therapy. Adjusted HR for mOS in 2nd-to-5th line therapy was 1.60 (95% CI 0.55-4.69, p = 0.39). Conclusions: No difference in survival was detected between first- and third-generation EGFR-TKIs in either first or 2nd-to-5th lines of therapy. Larger prospective studies are warranted reporting intracranial lesion size, EGFR alteration and expression levels in primary tumor and brain metastases, and response rates.
RESUMEN
Radiation-induced cell death is a complex process influenced by physical, chemical and biological phenomena. Strong dose gradient may intensify the complexity and reportedly creates significantly more cell death known as bystander effect. Although consensus on the nature and the mechanism of the bystander effect were not yet made, the immune process presumably plays an important role in many aspects of the radiotherapy including the bystander effect. Immune response of host body and immune suppression of tumor cells are modelled with four compartments in this study; viable tumor cells, T cell lymphocytes, immune triggering cells, and doomed cells. The growth of tumor was analyzed in two distinctive modes of tumor status (immune limited and immune escape) and its bifurcation condition. Tumors in the immune limited mode can grow only up to a finite size, named as terminal tumor volume analytically calculated from the model. The dynamics of the tumor growth in the immune escape mode is much more complex than the tumors in the immune limited mode especially when the status of tumor is close to the bifurcation condition. Radiation can kill tumor cells not only by radiation damage but also by boosting immune reaction. The model demonstrated that the highly heterogeneous dose distribution in spatially fractionated radiotherapy (SFRT) can make a drastic difference in tumor cell killing compared to the homogeneous dose distribution. SFRT can not only enhance but also moderate the cell killing depending on the immune response triggered by many factors such as dose prescription parameters, tumor volume at the time of treatment and tumor characteristics. The model was applied to the lifted data of 67NR tumors on mice and a sarcoma patient treated multiple times over 1200 days for the treatment of tumor recurrence as a demonstration.