Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337930

RESUMEN

Salt stress is a universal abiotic stress that severely affects plant growth and development. Understanding the mechanisms of Maclura tricuspidate's adaptation to salt stress is crucial for developing salt-tolerant plant varieties. This article discusses the integration of physiology, transcriptome, and metabolome to investigate the mechanism of salt adaptation in M. tricuspidata under salt stress conditions. Overall, the antioxidant enzyme system (SOD and POD) of M. tricuspidata exhibited higher activities compared with the control, while the content of soluble sugar and concentrations of chlorophyll a and b were maintained during salt stress. KEGG analysis revealed that deferentially expressed genes were primarily involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, alkaloids, and MAPK signaling pathways. Differential metabolites were enriched in amino acid metabolism, the biosynthesis of plant hormones, butanoate, and 2-oxocarboxylic acid metabolism. Interestingly, glycine, serine, and threonine metabolism were found to be important both in the metabolome and transcriptome-metabolome correlation analyses, suggesting their essential role in enhancing the salt tolerance of M. tricuspidata. Collectively, our study not only revealed the molecular mechanism of salt tolerance in M. tricuspidata, but also provided a new perspective for future salt-tolerant breeding and improvement in salt land for this species.

2.
Front Genet ; 14: 1274288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38054027

RESUMEN

Introduction: Soil salinization poses a significant challenge to plant growth and vitality. Plants like Tamarix ramosissima Ledeb (T. ramosissima), which are halophytes, are often integrated into planting schemes tailored for saline environments. Yet, the role of WRKY transcription factors in T. ramosissima, especially under sodium chloride (NaCl) stress mitigated by exogenous K+ application, is not well-understood. This research endeavors to bridge this knowledge gap. Methods: Using Pfam protein domain prediction and physicochemical property analysis, we delved into the WRKY genes in T. ramosissima roots that are implicated in counteracting NaCl stress when aided by exogenous K+ applications. By observing shifts in the expression levels of WRKY genes annotated to the KEGG pathway under NaCl stress at 0, 48, and 168 h, we aimed to identify potential key WRKY genes. Results: We found that the expression of 56 WRKY genes in T. ramosissima roots responded to exogenous K+ application during NaCl stress at the indicated time points. Particularly, the expression levels of these genes were primarily upregulated within 168 h. From these, 10 WRKY genes were found to be relevant in the KEGG pathways. Moreover, six genes, namely Unigene0024962, Unigene0024963, Unigene0010090, Unigene0007135, Unigene0070215, and Unigene0077293, were annotated to the Plant-pathogen interaction pathway or the MAPK signaling pathway in plants. These genes exhibited dynamic expression regulation at 48 h with the application of exogenous K+ under NaCl stress. Discussion: Our research highlights that WRKY transcription factors can modulate the activation or inhibition of related genes during NaCl stress with the application of exogenous K+. This regulation enhances the plant's adaptability to saline environments and mitigates the damage induced by NaCl. These findings provide valuable gene resources for future salt-tolerant Tamarix breeding and expand our understanding of the molecular mechanisms of WRKY transcription factors in alleviating NaCl toxicity.

3.
Genes (Basel) ; 14(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38137025

RESUMEN

Salt stress is a significant environmental factor affecting plant growth and development, with NaCl stress being one of the most common types of salt stress. The halophyte, Tamarix ramosissima Ledeb (T. ramosissima), is frequently utilized for the afforestation of saline-alkali soils. Indeed, there has been limited research and reports by experts and scholars on the regulatory mechanisms of basic leucine zipper (bZIP) genes in T. ramosissima when treated with exogenous potassium (K+) to alleviate the effects of NaCl stress. This study focused on the bZIP genes in T. ramosissima roots under NaCl stress with additional KCl applied. We identified key candidate genes and metabolic pathways related to bZIP and validated them through quantitative real-time PCR (qRT-PCR). The results revealed that under NaCl stress with additional KCl applied treatments at 0 h, 48 h, and 168 h, based on Pfam protein domain prediction and physicochemical property analysis, we identified 20 related bZIP genes. Notably, four bZIP genes (bZIP_2, bZIP_6, bZIP_16, and bZIP_18) were labeled with the plant hormone signal transduction pathway, showing a predominant up-regulation in expression levels. The results suggest that these genes may mediate multiple physiological pathways under NaCl stress with additional KCl applied at 48 h and 168 h, enhancing signal transduction, reducing the accumulation of ROS, and decreasing oxidative damage, thereby enhancing the tolerance of T. ramosissima to NaCl stress. This study provides gene resources and a theoretical basis for further breeding of salt-tolerant Tamarix species and the involvement of bZIP transcription factors in mitigating NaCl toxicity.


Asunto(s)
Potasio , Tamaricaceae , Potasio/metabolismo , Tamaricaceae/genética , Tamaricaceae/metabolismo , Cloruro de Sodio/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Fitomejoramiento
4.
Int J Genomics ; 2020: 6870157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32775403

RESUMEN

Salinity stress is one of the most devastating abiotic stresses limiting plant growth and productivity. As a moderately salt-tolerant crop, shrub willow (Salix spp.) is widely distributed over the world and can provide multiple bioenergy product and environmental benefits. To delve into the salt tolerance mechanism and screen out salt-tolerant genes, two shrub willow cultivars (a salt-sensitive genotype JW9-6 and a salt-tolerant genotype JW2372) at three time points (0, 2, and 12 h) after NaCl treatments were used for RNA sequencing. A comparative analysis between genotypes and time points showed 1,706 differentially expressed genes (DEGs), of which 1,029 and 431 DEGs were only found in the JW9-6 and JW2372, respectively. Gene Ontology (GO) and MapMan annotations suggested that many DEGs were involved in various defense-related biological pathways, including cell wall integrity, hormone signaling, antioxidant system, heat shock proteins, and transcription factors. Compared to JW9-6, JW2372 contained more DEGs involved in the maintenance of the cell wall integrity, ABA, and ethylene signal transduction pathways. In addition, more DEGs encoding heat shock proteins were found in JW2372. Instead, transcription factors including ERF, MYB, NAC, and WRKY were found to be more differentially expressed in JW9-6 under salinity stress. Furthermore, expressions of nine randomly selected DEGs were verified by qRT-PCR analysis. This study contributes in new perspicacity into underlying the salt tolerance mechanism of a shrub willow at the transcriptome level and also provides numerous salt-tolerant genes for further genetic engineering and breeding purposes in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...