Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291695

RESUMEN

Superabsorbers have been widely used in industrial and daily chemical products. Polymerized sodium acrylate (PAA-Na) is the most popular superabsorber used in diapers. Here we report the enhanced photodegradation of PAA-Na via carbon dots (CDs) in aqueous solutions. For a system comprising PAA-Na and CDs, CDs act as photosensitizers which improve the photodegradation efficiency by ∼5.6% compared with PAA-Na alone. Moreover, for PAA-Na+TiO2+CDs system, CDs also play the role of transfer stations of excited electrons which facilitate electron transfer from TiO2 nanoparticles (NPs) to PAA-Na and further boost the photodegradation efficiency of PAA-Na by ∼9.8%. Based on the spectral results, electrons can hardly transfer from TiO2 NPs to PAA-Na directly even with a bigger driving force compared with CDs; however, CDs can provide effective electron transfer channels within CDs-TiO2 NPs and CDs-PAA-Na which finally build an efficient pathway for electron transfer from TiO2 NPs to PAA-Na. This study reveals the great potential applications of CDs in photodegradation fields as photosensitizers or mediators to promote electron transfer efficiency.

2.
Sci Total Environ ; 951: 175489, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142401

RESUMEN

Only about 100 disinfection byproducts (DBPs) have been tested for their potential aquatic toxicity. It is not known which specific DBPs, DBP main groups, and DBP subgroups are more toxic due to the lack of experimental toxicity data. Herein, high priority specific DBPs, DBP main groups, DBP subgroups, most sensitive model aquatic species, potential PBT and PMT (persistent, bioaccumulative/mobile, and toxic) DBPs were virtually screened for 1187 updated DBPs inventory. Priority setting based on experimental and predicted acute and chronic aquatic toxicity data found that the aromatic and alicyclic DBPs in four DBPs main groups showed high priority because larger proportions of aromatic and alicyclic DBPs are in high hazard categories (i.e. Acute and/or Chronic Toxic-1 or Toxic-2) according to the criteria in GHS system compared to the aliphatic and heterocyclic DBPs. The halophenols, estrogen-DBPs, nonhalogenated esters, and nonhalogenated aldehydes were recognized as high priority DBPs subgroups. For specific DBPs, 19 and 31 DBPs should be highly concerned in the future study because both acute and chronic toxicity of those DBPs to all of the three aquatic life (algae, Daphnia magna, fish) were classified as Toxic-1 and Toxic-2, respectively. The Daphnia magna and algae were sensitive to the acute toxicity of DBPs, while the fish and Daphnia magna were sensitive to the chronic toxicity of DBPs. One potential PBT (Tetrachlorobisphenol A) and four potential PMT DBPs were identified. For verification, the acute toxicity of four DBPs on three aquatic organism were performed, and their tested acute toxicity data to three aquatic organisms were consistent with the predictions. Our results could be beneficial to government regulators to adopt effective measures to limit the discharge of high priority DBPs and help the scientific community to develop or improve disinfection processes to reduce the production of high priority DBPs.


Asunto(s)
Desinfectantes , Desinfección , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Animales , Desinfectantes/toxicidad , Daphnia/efectos de los fármacos
3.
Chemosphere ; 358: 142239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705414

RESUMEN

So far, about 130 disinfection by-products (DBPs) and several DBPs-groups have had their potential endocrine-disrupting effects tested on some endocrine endpoints. However, it is still not clear which specific DBPs, DBPs-groups/subgroups may be the most toxic substances or groups/subgroups for any given endocrine endpoint. In this study, we attempt to address this issue. First, a list of relevant DBPs was updated, and 1187 DBPs belonging to 4 main-groups (aliphatic, aromatic, alicyclic, heterocyclic) and 84 subgroups were described. Then, the high-priority endocrine endpoints, DBPs-groups/subgroups, and specific DBPs were determined from 18 endpoints, 4 main-groups, 84 subgroups, and 1187 specific DBPs by a virtual-screening method. The results demonstrate that most of DBPs could not disturb the endocrine endpoints in question because the proportion of active compounds associated with the endocrine endpoints ranged from 0 (human thyroid receptor beta) to 32% (human transthyretin (hTTR)). All the endpoints with a proportion of active compounds greater than 10% belonged to the thyroid system, highlighting that the potential disrupting effects of DBPs on the thyroid system should be given more attention. The aromatic and alicyclic DBPs may have higher priority than that of aliphatic and heterocyclic DBPs by considering the activity rate and potential for disrupting effects. There were 2 (halophenols and estrogen DBPs), 12, and 24 subgroups that belonged to high, moderate, and low priority classes, respectively. For individual DBPs, there were 23 (2%), 193 (16%), and 971 (82%) DBPs belonging to the high, moderate, and low priority groups, respectively. Lastly, the hTTR binding affinity of 4 DBPs was determined by an in vitro assay and all the tested DBPs exhibited dose-dependent binding potency with hTTR, which was consistent with the predicted result. Thus, more efforts should be performed to reveal the potential endocrine disruption of those high research-priority main-groups, subgroups, and individual DBPs.


Asunto(s)
Desinfectantes , Desinfección , Disruptores Endocrinos , Contaminantes Químicos del Agua , Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Humanos , Desinfectantes/análisis , Desinfectantes/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122542, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36848858

RESUMEN

Modification of surficial functional groups among carbon quantum dots (CQDs) has been considered an efficient approach to regulate the fluorescence emission of CQDs. However, the mechanism of how surficial functional groups affect fluorescence is vague which fundamentally limits the further applications of CQDs. Here we report the concentration-dependent fluorescence and fluorescence quantum yield of nitrogen-dopped carbon quantum dots (N-CQDs). At high concentrations (≥0.188 g/L), fluorescence redshift occurs accompanied with decrease in fluorescence quantum yield. Fluorescence excitation spectra and HOMO-LUMO energy gaps calculations show that energy levels of excited states of N-CQDs are relocated via the coupling of surficial amino groups among N-CQDs. Furthermore, electron density difference maps and broadened fluorescence spectra obtained from both experimental measurement and theoretical calculation further confirm that the coupling of surficial amino groups dominates the fluorescence property and verify the formation of charge-transfer state of N-CQDs complex at high concentrations which provides pathways for efficient charge transfer. Given that charge-transfer state induced fluorescence loss and fluorescence spectra broadening are the typical characteristics of organic molecules, CQDs exhibit the optical properties of both quantum dots and organic molecules.

5.
J Xenobiot ; 12(3): 145-157, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35893263

RESUMEN

Since 1974, more than 800 disinfection byproducts (DBPs) have been identified from disinfected drinking water, swimming pool water, wastewaters, etc. Some DBPs are recognized as contaminants of high environmental concern because they may induce many detrimental health (e.g., cancer, cytotoxicity, and genotoxicity) and/or ecological (e.g., acute toxicity and development toxicity on alga, crustacean, and fish) effects. However, the information on whether DBPs may elicit potential endocrine-disrupting effects in human and wildlife is scarce. It is the major objective of this paper to summarize the reported potential endocrine-disrupting effects of the identified DBPs in the view of adverse outcome pathways (AOPs). In this regard, we introduce the potential molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs) associated with exposure to specific DBPs. The present evidence indicates that the endocrine system of organism can be perturbed by certain DBPs through some MIEs, including hormone receptor-mediated mechanisms and non-receptor-mediated mechanisms (e.g., hormone transport protein). Lastly, the gaps in our knowledge of the endocrine-disrupting effects of DBPs are highlighted, and critical directions for future studies are proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...