Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36551965

RESUMEN

The immunosuppressive tumor microenvironment (TME) consists of suppressive cells producing a variety of immunomodulatory proteins, such as programmed death ligand 1 (PD-L1) and indoleamine-2,3-dioxygenase (IDO). Although granzyme B (GrB) is known to convey the cytolytic activities of CD8+ cytotoxic lymphocytes, it is also expressed by other cells, such as regulatory T and B cells, for immunosuppressive purposes. The role of GrB+ lymphocytes in melanoma has not been examined extensively. In this study, benign, premalignant, and malignant melanocytic tumors were stained immunohistochemically for CD8 and GrB. PD-L1 was also stained from malignant samples that had accompanying clinicopathological data. The association of CD8+ and GrB+ lymphocytes with PD-L1 expression, tumor stage, prognosis, and previously analyzed immunosuppressive factors were evaluated. Our aim was to obtain a more comprehensive perception of the immunosuppressive TME in melanoma. The results show that both CD8+ and GrB+ lymphocytes were more abundant in pT4 compared to pT1 melanomas, and in lymph node metastases compared to primary melanomas. Surprisingly, a low GrB/CD8 ratio was associated with better recurrence-free survival in primary melanomas, which indicates that GrB+ lymphocytes might represent activated immunosuppressive lymphocytes rather than cytotoxic T cells. In the present study, CD8+ lymphocytes associated positively with both tumor and stromal immune cell PD-L1 and IDO expression. In addition, PD-L1+ tumor and stromal immune cells associated positively with IDO+ stromal immune and melanoma cells. The data suggest that IDO and PD-L1 seem to be key immunosuppressive factors in CD8+ lymphocyte-predominant tumors in CM.

2.
Mol Ecol ; 31(2): 512-528, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34716943

RESUMEN

Genetic diversity is the basis for evolutionary adaptation and selection under changing environmental conditions. Phytoplankton populations are genotypically diverse, can become genetically differentiated within small spatiotemporal scales and many species form resting stages. Resting stage accumulations in sediments (seed banks) are expected to serve as reservoirs for genetic information, but so far their role in maintaining phytoplankton diversity and in evolution has remained unclear. In this study we used the toxic dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as a model organism to investigate if (i) the benthic seed bank is more diverse than the pelagic population and (ii) the pelagic population is seasonally differentiated. Resting stages (benthic) and plankton (pelagic) samples were collected at a coastal bloom site in the Baltic Sea, followed by cell isolation and genotyping using microsatellite markers (MS) and restriction site associated DNA sequencing (RAD). High clonal diversity (98%-100%) combined with intermediate to low gene diversity (0.58-0.03, depending on the marker) was found. Surprisingly, the benthic and pelagic fractions of the population were equally diverse, and the pelagic fraction was temporally homogeneous, despite seasonal fluctuation of environmental selection pressures. The results of this study suggest that continuous benthic-pelagic coupling, combined with frequent sexual reproduction, as indicated by persistent linkage equilibrium, prevent the dominance of single clonal lineages in a dynamic environment. Both processes harmonize the pelagic with the benthic population and thus prevent seasonal population differentiation. At the same time, frequent sexual reproduction and benthic-pelagic coupling maintain high clonal diversity in both habitats.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Ecosistema , Genotipo , Fitoplancton/genética , Estaciones del Año , Banco de Semillas
3.
Microorganisms ; 9(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34946082

RESUMEN

We utilized the trait-based approach in a novel way to examine how specific phytoplankton traits are related to physical features connected to global change, water quality features connected to catchment change, and nutrient availability connected to nutrient loading. For the analyses, we used summertime monitoring data originating from the coastal northern Baltic Sea and generalized additive mixed modeling (GAMM). Of the physical features connected to global climate change, temperature was the most important affecting several studied traits. Nitrogen-fixing, buoyant, non-motile, and autotrophic phytoplankton, as well as harmful cyanobacteria, benefited from a higher temperature. Salinity and stratification did not have clear effects on the traits. Water transparency, which in the Baltic Sea is connected to catchment change, had a mostly negative relation to the studied traits. Harmfulness was negatively correlated with transparency, while the share of non-harmful and large-sized phytoplankton was positively related to it. We used nutrient loading source type and total phosphorus (TP) as proxies for nutrient availability connected to anthropogenic eutrophication. The nutrient loading source type did not relate to any of the traits. Our result showing that N-fixing was not related to TP is discussed. The regionality analysis demonstrated that traits should be calculated in both absolute terms (biomass) and proportions (share of total biomass) to get a better view of community changes and to potentially supplement the environmental status assessments.

4.
Front Microbiol ; 12: 681881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211448

RESUMEN

Cyanobacteria of the order Nostocales, including Baltic Sea bloom-forming taxa Nodularia spumigena, Aphanizomenon flosaquae, and Dolichospermum spp., produce resting stages, known as akinetes, under unfavorable conditions. These akinetes can persist in the sediment and germinate if favorable conditions return, simultaneously representing past blooms and possibly contributing to future bloom formation. The present study characterized cyanobacterial akinete survival, germination, and potential cyanotoxin production in brackish water sediment archives from coastal and open Gulf of Finland in order to understand recent bloom expansion, akinete persistence, and cyanobacteria life cycles in the northern Baltic Sea. Results showed that cyanobacterial akinetes can persist in and germinate from Northern Baltic Sea sediment up to >40 and >400 years old, at coastal and open-sea locations, respectively. Akinete abundance and viability decreased with age and depth of vertical sediment layers. The detection of potential microcystin and nodularin production from akinetes was minimal and restricted to the surface sediment layers. Phylogenetic analysis of culturable cyanobacteria from the coastal sediment core indicated that most strains likely belonged to the benthic genus Anabaena. Potentially planktonic species of Dolichospermum could only be revived from the near-surface layers of the sediment, corresponding to an estimated age of 1-3 years. Results of germination experiments supported the notion that akinetes do not play an equally significant role in the life cycles of all bloom-forming cyanobacteria in the Baltic Sea. Overall, there was minimal congruence between akinete abundance, cyanotoxin concentration, and the presence of cyanotoxin biosynthetic genes in either sediment core. Further research is recommended to accurately detect and quantify akinetes and cyanotoxin genes from brackish water sediment samples in order to further describe species-specific benthic archives of cyanobacteria.

5.
Harmful Algae ; 102: 101989, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33875185

RESUMEN

Harmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish linked to HAB events has been observed in estuarine waters associated with influx of water from the southern North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then such blooms have been observed in high cell densities in spring causing fish mortalities some years. Dinoflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among dinoflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD), has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudo-nitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyanobacteria produce toxins, e.g. Nodularia spumigena, producer of nodularin, which may be a human health problem and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of seafood, socioeconomic well-being and ecosystem services. Increasing anthropogenic influence and climate change create environmental stressors causing shifts in the biogeography and intensity of HABs. Continued monitoring of HAB and phycotoxins and the operation of historical databases such as HAEDAT provide not only an ongoing status report but also provide a way to interpret causes and mechanisms of HABs.


Asunto(s)
Ecosistema , Floraciones de Algas Nocivas , Animales , Perros , Europa (Continente) , Nodularia , Noruega , Océanos y Mares , Suecia
6.
PLoS One ; 15(4): e0231690, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32353002

RESUMEN

The Baltic Sea summer phytoplankton community plays an important role in biogeochemical cycling and in the transfer of energy through the food web via zooplankton. We aimed to improve the understanding of the degree to which large-scale versus local environmental dynamics regulate phytoplankton dynamics by analyzing time series at the Baltic Sea scale. We used dynamic factor analysis to study if there are common patterns of interannual variation that are shared ("common trends") among summer phytoplankton total and class-level biomass time series observed across Baltic Sea latitudinal gradients in salinity and temperature. We evaluated alternative hypotheses regarding common trends among summer phytoplankton biomass: Baltic Sea-wide common trends; common trends by geography (latitude and basin); common trends differing among functional groups (phytoplankton classes); or common trends driven by both geography and functional group. Our results indicated little support for a common trend in total summer phytoplankton biomass. At a finer resolution, classes had common trends that were most closely associated with the cryptophyte and cyanobacteria time series with patterns that differed between northern and southern sampling stations. These common trends were also very sensitive to two anomalous years (1990, 2008) of cryptophyte biomass. The Baltic Sea Index, a regional climate index, was correlated with two common class trends that shifted in mean state around the mid-1990s. The limited coherence in phytoplankton biomass variation over time despite known, large-scale, ecosystem shifts suggests that stochastic dynamics at local scales limits the ability to observe common trends at the scale of monitoring data collection.


Asunto(s)
Biomasa , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Criptófitas/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Modelos Estadísticos
7.
Harmful Algae ; 91: 101632, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32057342

RESUMEN

There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends.


Asunto(s)
Floraciones de Algas Nocivas , Agua de Mar , Cambio Climático , Humanos , Concentración de Iones de Hidrógeno , Fitoplancton
8.
Harmful Algae ; 91: 101685, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32057344

RESUMEN

Almost every summer, dense blooms of filamentous cyanobacteria are formed in the Baltic Sea. These blooms may cause problems for tourism and ecosystem services, where surface accumulations and beach fouling are commonly occurring. Future changes in environmental drivers, including climate change and other anthropogenic disturbances, may further enhance these problems. By compiling monitoring data from countries adjacent to the Baltic Sea, we present spatial and temporal genus-specific distribution of diazotrophic filamentous cyanobacteria (Nostocales) during four decades (1979-2017). While the summer surface salinity decreased with a half up to one unit, the surface temperature in July-August increased with 2-3 °C in most sub-basins of the Baltic Sea, during the time period. The biovolumes of the toxic Nodularia spumigena did not change in any of the sub-basins during the period. On the other hand, the biovolume of the non-toxic Aphanizomenon sp. and the potentially toxic Dolichospermum spp. increased in the northern parts of the Baltic Sea, along with the decreased salinity and elevated temperatures, but Aphanizomenon sp. decreased in the southern parts despite decreased salinity and increased temperatures. These contradictory changes in biovolume of Aphanizomenon sp. between the northern and southern parts of the Baltic Sea may be due to basin-specific effects of the changed environmental conditions, or can be related to local adaptation by sub-populations of the genera. Overall, this comprehensive dataset presents insights to genus-specific bloom dynamics by potentially harmful diazotrophic filamentous cyanobacteria in the Baltic Sea.


Asunto(s)
Cianobacterias , Ecosistema , Países Bálticos , Nodularia
9.
J Phycol ; 55(6): 1226-1238, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31520419

RESUMEN

In seasonal environments, strong gradients of environmental parameters can shape life cycles of phytoplankton. Depending on the rate of environmental fluctuation, specialist or generalist strategies may be favored, potentially affecting life cycle transitions. The present study examined life cycle transitions of the toxin producing Baltic dinoflagellate Alexandrium ostenfeldii and their regulation by environmental factors (temperature and nutrients). This investigation aimed to determine whether genetic recombination of different strains is required for resting cyst formation and whether newly formed cysts are dormant. Field data (temperature and salinity) and sediment surface samples were collected from a site with recurrent blooms and germination and encystment experiments were conducted under controlled laboratory conditions. Results indicate a lack of seasonal germination pattern, set by an endogenous rhythm, as commonly found with other dinoflagellates from the Baltic Sea. Germination of quiescent cysts was triggered by temperatures exceeding 10°C and combined nutrient limitation of nitrogen and phosphorus or a drop in temperature from 16 to 10°C triggered encystment most efficiently. Genetic recombination was not mandatory for the formation of resting cysts, but supported higher numbers of resistant cysts and enhanced germination capacity after a resting period. Findings from this study confirm that A. ostenfeldii follows a generalist germination and cyst formation strategy, driven by strong seasonality, which may support its persistence and possibly expansion in marginal environments in the future, if higher temperatures facilitate a longer growth season.


Asunto(s)
Dinoflagelados , Animales , Ecosistema , Fitoplancton , Salinidad , Estaciones del Año
10.
Harmful Algae ; 87: 101622, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31349884

RESUMEN

Blooms of Alexandrium spp. are a well-known phenomenon in Northern European waters. While A. tamarense/catenella, and A. pseudogonyaulax have been reported from marine waters, high densities of A. ostenfeldii are mainly observed at lower salinities in North Sea estuaries and the Baltic Sea, suggesting salinity as a driver of Alexandrium species composition and toxin distribution. To investigate this relationship, an oceanographic expedition through a natural salinity gradient was conducted in June 2016 along the coasts of Denmark. Besides hydrographic data, phytoplankton and sediment samples were collected for analyses of Alexandrium spp. cell and cyst abundances, for toxin measurement and cell isolation. Plankton data revealed the predominance of A. pseudogonyaulax at all transect stations while A. ostenfeldii and A. catenella generally contributed a minor fraction to the Alexandrium community. High abundances of A. pseudogonyaulax in the shallow enclosed Limfjord were accompanied by high amounts of goniodomin A (GDA). This toxin was also detected at low abundances along with A. pseudogonyaulax in the North Sea and the Kattegat. Genetic and morphological characterization of established strains showed high similarity of the Northern European population to distant geographic populations. Despite low cell abundances of A. ostenfeldii, different profiles of cycloimines were measured in the North Sea and in the Limfjord. This field survey revealed that salinity alone does not determine Alexandrium species and toxin distribution, but emphasizes the importance of habitat conditions such as proximity to seed banks, shelter, and high nutrient concentrations. The results show that A. pseudogonyaulax has become a prominent member of the Alexandrium spp. community over the past decade in the study area. Analyses of long term monitoring data from the Limfjord confirmed a recent shift to A. pseudogonyaulax dominance. Cyst and toxin records of the species in Kiel Bight suggest a spreading potential into the brackish Baltic Sea, which might lead to an expansion of blooms under future climate conditions.


Asunto(s)
Dinoflagelados , Salinidad , Éteres , Europa (Continente) , Macrólidos , Aguas Salinas
11.
Ecol Evol ; 9(8): 4443-4451, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031918

RESUMEN

Environmental conditions regulate the germination of phytoplankton resting stages. While some factors lead to synchronous germination, others stimulate germination of only a small fraction of the resting stages. This suggests that habitat filters may act on the germination level and thus affect selection of blooming strains. Benthic "seed banks" of the toxic dinoflagellate Alexandrium ostenfeldii from the Baltic Sea are genetically and phenotypically diverse, indicating a high potential for adaptation by selection on standing genetic variation. Here, we experimentally tested the role of climate-related salinity and temperature as selection filters during germination and subsequent establishment of A. ostenfeldii strains. A representative resting cyst population was isolated from sediment samples, and germination and reciprocal transplantation experiments were carried out, including four treatments: Average present day germination conditions and three potential future conditions: high temperature, low salinity, and high temperature in combination with low salinity. We found that the final germination success of A. ostenfeldii resting cysts was unaffected by temperature and salinity in the range tested. A high germination success of more than 80% in all treatments indicates that strains are not selected by temperature and salinity during germination, but selection becomes more important shortly after germination, in the vegetative stage of the life cycle. Moreover, strains were not adapted to germination conditions. Instead, highly plastic responses occurred after transplantation and significantly higher growth rates were observed at higher temperature. High variability of strain-specific responses has probably masked the overall effect of the treatments, highlighting the importance of testing the effect of environmental factors on many strains. It is likely that A. ostenfeldii populations can persist in the future, because suitable strains, which are able to germinate and grow well at potential future climate conditions, are part of the highly diverse cyst population. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.c8c83nr.

12.
Environ Microbiol ; 18(2): 679-91, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26913820

RESUMEN

Selection of suitable genotypes from diverse seed banks may help phytoplankton populations to cope with environmental changes. This study examines whether the high genotypic diversity found in the Baltic cyst pool of the toxic dinoflagellate Alexandrium ostenfeldii is coupled to phenotypic variability that could aid short-term adaptation. Growth rates, cellular toxicities and bioluminescence of 34 genetically different clones isolated from cyst beds of four Baltic bloom sites were determined in batch culture experiments along temperature and salinity gradients covering present and future conditions in the Baltic Sea. For all parameters a significant effect of genotype on the response to temperature and salinity changes was identified. General or site-specific effects of the two factors remained minor. Clones thriving at future conditions were different from the best performing at present conditions, suggesting that genotypic shifts may be expected in the future. Increased proportions of highly potent saxitoxin were observed as a plastic response to temperature increase, indicating a potential for higher toxicity of future blooms. The observed standing variation in Baltic seed banks of A. ostenfeldii suggests that the population is likely to persist under environmental change.


Asunto(s)
Aclimatación/fisiología , Dinoflagelados/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Fitoplancton/crecimiento & desarrollo , Banco de Semillas , Aclimatación/genética , Clima , Dinoflagelados/genética , Dinoflagelados/fisiología , Ambiente , Variación Genética/genética , Genotipo , Floraciones de Algas Nocivas , Mediciones Luminiscentes , Microalgas/genética , Microalgas/fisiología , Fitoplancton/genética , Fitoplancton/fisiología , Salinidad , Temperatura
13.
Toxicon ; 112: 68-76, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26829651

RESUMEN

Gymnodimines are lipophilic toxins produced by the marine dinoflagellates Karenia selliformis and Alexandrium ostenfeldii. Currently four gymnodimine analogues are known and characterized. Here we describe a novel gymnodimine and a range of gymnodimine related compounds found in an A. ostenfeldii isolate from the northern Baltic Sea. Gymnodimine D (1) was extracted and purified from clonal cultures, and characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR) spectroscopy, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) experiments. The structure of 1 is related to known gymnodimines (2-5) with a six-membered cyclic imine ring and several other fragments typical of gymnodimines. However, the carbon chain in the gymnodimine macrocyclic ring differs from the known gymnodimines in having two tetrahydrofuran rings in the macrocyclic ring.


Asunto(s)
Dinoflagelados/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Hidrocarburos Cíclicos/metabolismo , Toxinas Marinas/metabolismo , Océano Atlántico , Células Cultivadas , Cromatografía Líquida de Alta Presión , Células Clonales , Dinoflagelados/química , Dinoflagelados/citología , Dinoflagelados/crecimiento & desarrollo , Floraciones de Algas Nocivas , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/aislamiento & purificación , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/aislamiento & purificación , Hidrocarburos Cíclicos/química , Hidrocarburos Cíclicos/aislamiento & purificación , Iminas/química , Iminas/aislamiento & purificación , Iminas/metabolismo , Toxinas Marinas/química , Toxinas Marinas/aislamiento & purificación , Metilación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Suecia , Espectrometría de Masas en Tándem
14.
Toxins (Basel) ; 7(12): 4852-67, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26602927

RESUMEN

A saxitoxin (STX) proficiency test (PT) was organized as part of the Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk (EQuATox) project. The aim of this PT was to provide an evaluation of existing methods and the European laboratories' capabilities for the analysis of STX and some of its analogues in real samples. Homogenized mussel material and algal cell materials containing paralytic shellfish poisoning (PSP) toxins were produced as reference sample matrices. The reference material was characterized using various analytical methods. Acidified algal extract samples at two concentration levels were prepared from a bulk culture of PSP toxins producing dinoflagellate Alexandrium ostenfeldii. The homogeneity and stability of the prepared PT samples were studied and found to be fit-for-purpose. Thereafter, eight STX PT samples were sent to ten participating laboratories from eight countries. The PT offered the participating laboratories the possibility to assess their performance regarding the qualitative and quantitative detection of PSP toxins. Various techniques such as official Association of Official Analytical Chemists (AOAC) methods, immunoassays, and liquid chromatography-mass spectrometry were used for sample analyses.


Asunto(s)
Toxinas Marinas/análisis , Animales , Cromatografía Liquida/métodos , Dinoflagelados , Ensayos de Aptitud de Laboratorios/normas , Ratones , Mytilus , Estándares de Referencia , Intoxicación por Mariscos , Espectrometría de Masas en Tándem
15.
PLoS One ; 10(6): e0128904, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042598

RESUMEN

Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.


Asunto(s)
Alelopatía , Cianobacterias/crecimiento & desarrollo , Espacio Intracelular/metabolismo , Microcistinas/biosíntesis , Salinidad , Biomasa , Cianobacterias/metabolismo , Finlandia , Modelos Lineales , Estaciones del Año , Especificidad de la Especie
16.
J Phycol ; 50(1): 81-100, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26988010

RESUMEN

Alexandrium ostenfeldii (Paulsen) Balech and Tangen and A. peruvianum (Balech and B.R. Mendiola) Balech and Tangen are morphologically closely related dinoflagellates known to produce potent neurotoxins. Together with Gonyaulax dimorpha Biecheler, they constitute the A. ostenfeldii species complex. Due to the subtle differences in the morphological characters used to differentiate these species, unambiguous species identification has proven problematic. To better understand the species boundaries within the A. ostenfeldii complex we compared rDNA data, morphometric characters and toxin profiles of multiple cultured isolates from different geographic regions. Phylogenetic analysis of rDNA sequences from cultures characterized as A. ostenfeldii or A. peruvianum formed a monophyletic clade consisting of six distinct groups. Each group examined contained strains morphologically identified as either A. ostenfeldii or A. peruvianum. Though key morphological characters were generally found to be highly variable and not consistently distributed, selected plate features and toxin profiles differed significantly among phylogenetic clusters. Additional sequence analyses revealed a lack of compensatory base changes in ITS2 rRNA structure, low to intermediate ITS/5.8S uncorrected genetic distances, and evidence of reticulation. Together these data (criteria currently used for species delineation in dinoflagellates) imply that the A. ostenfeldii complex should be regarded a single genetically structured species until more material and alternative criteria for species delimitation are available. Consequently, we propose that A. peruvianum is a heterotypic synonym of A. ostenfeldii and this taxon name should be discontinued.

17.
PLoS One ; 8(6): e66475, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776676

RESUMEN

Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades.


Asunto(s)
Cambio Climático , Eutrofización/fisiología , Cadena Alimentaria , Plancton/crecimiento & desarrollo , Estaciones del Año , Animales , Países Bálticos , Océanos y Mares , Dinámica Poblacional , Salinidad , Agua de Mar/química , Especificidad de la Especie , Temperatura
18.
Ecol Evol ; 2(6): 1195-207, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22833794

RESUMEN

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO(2) availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24°C, and present day and next century applied atmospheric pCO(2), respectively. In both species, individual strains were affected in different ways by increased temperature and pCO(2). The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO(2) on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO(2). Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO(2) supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO(2) conditions, with potentially severe consequences for the coastal ecosystem.

19.
Ambio ; 36(2-3): 195-202, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17520934

RESUMEN

Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Ecosistema , Contaminación de Alimentos , Larva/efectos de los fármacos , Toxinas Marinas , Agua de Mar/microbiología , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/toxicidad , Animales , Países Bálticos , Carbono/química , Carbono/metabolismo , Cianobacterias/química , Cianobacterias/patogenicidad , Monitoreo del Ambiente , Peces , Larva/crecimiento & desarrollo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Lipopolisacáridos/toxicidad , Toxinas Marinas/química , Toxinas Marinas/metabolismo , Toxinas Marinas/toxicidad , Nodularia/química , Nodularia/metabolismo , Nodularia/patogenicidad , Compuestos Orgánicos/metabolismo , Péptidos/química , Péptidos/metabolismo , Péptidos/toxicidad , Factores de Tiempo , Zooplancton/metabolismo
20.
J Virol ; 79(5): 2720-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15708991

RESUMEN

Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), a potent virus for mammalian cell gene delivery, possesses an ability to transduce mammalian cells without viral replication. We examined the role of the cellular cytoskeleton in the cytoplasmic trafficking of viral particles toward the nucleus in human hepatic cells. Microscopic studies showed that capsids were found in the nucleus after either viral inoculation or cytoplasmic microinjection of nucleocapsids. The presence of microtubule (MT) depolymerizing agents caused the amount of nuclear capsids to increase. Overexpression of p50/dynamitin, an inhibitor of dynein-dependent endocytic trafficking from peripheral endosomes along MTs toward late endosomes, did not significantly affect the amount of nuclear accumulation of nucleocapsids in the inoculated cells, suggesting that viral nucleocapsids are released into the cytosol during the early stages of the endocytic pathway. Moreover, studies with recombinant viruses containing the nuclear-targeted expression beta-galactosidase gene (beta-gal) showed a markedly increased level in the cellular expression of beta-galactosidase in the presence of MT-disintegrating drugs. The maximal increase in expression at 10 h postinoculation was observed in the presence of 80 muM nocodazole or 10 muM vinblastine. Together, these data suggest that the intact MTs constitute a barrier to baculovirus transport toward the nucleus.


Asunto(s)
Vectores Genéticos , Hepatocitos/metabolismo , Hepatocitos/virología , Nucleopoliedrovirus/genética , Transporte Activo de Núcleo Celular , Línea Celular , Citoesqueleto/metabolismo , Citoesqueleto/virología , Complejo Dinactina , Expresión Génica , Hepatocitos/ultraestructura , Humanos , Operón Lac , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Microtúbulos/virología , Nucleocápside/metabolismo , Nucleocápside/ultraestructura , Nucleopoliedrovirus/metabolismo , Nucleopoliedrovirus/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción Genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...