Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1415: 335-340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440053

RESUMEN

Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular dystrophy resulting from mutations in the gene CTRP5/C1QTNF5. A mouse model (Ctrp5+/-) for the most common S163R developed many features of human clinical disease. We generated a novel homozygous Ctrp5 gene knock-out (Ctrp5-/-) mouse model to further study the mechanism of L-ORD. The retinal morphology of these mice was evaluated by retinal imaging, light microscopy, and transmission electron microscopy (TEM) at 6, 11, and 18.5 mo. Expression of Ctrp5 was analyzed using immunostaining and qRT-PCR. The Ctrp5-/- mice showed lack of both Ctrp5 transcript and protein. Presence of a significantly larger number of autofluorescent spots was observed in Ctrp5-/- mice compared to the WT (P < 0.0001) at 19 mo. Increased RPE stress with vacuolization and thinning was observed as early as 6 mo in Ctrp5-/- mice. Further, ultrastructural analyses revealed a progressive accumulation of basal laminar sub-RPE deposits in Ctrp5-/- mice from 11 mo. The Ctrp5-/- mice shared retinal and RPE pathology that matches with that previously described for Ctrp5+/- mice suggesting that pathology in these mice results from the loss of functional CTRP5 and that the presence of CTRP5 is critical for normal RPE and retinal function.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Ratones , Humanos , Animales , Degeneración Retiniana/patología , Retina/patología , Degeneración Macular/patología , Mutación , Epitelio Pigmentado de la Retina/patología
2.
PLoS Genet ; 17(10): e1009848, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662339

RESUMEN

Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.


Asunto(s)
Etnicidad/genética , Degeneración Retiniana/genética , Consanguinidad , Análisis Mutacional de ADN/métodos , Exoma/genética , Proteínas del Ojo/genética , Femenino , Estudios de Asociación Genética/métodos , Ligamiento Genético/genética , Genotipo , Humanos , Masculino , México , Mutación/genética , Pakistán , Linaje , Retina/patología , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
3.
Hum Gene Ther ; 30(5): 632-650, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30499344

RESUMEN

Patients harboring homozygous c.498_499insC mutations in MFRP demonstrate hyperopia, microphthalmia, retinitis pigmentosa, retinal pigment epithelial atrophy, variable degrees of foveal edema, and optic disc drusen. The disease phenotype is variable, however, with some patients maintaining good central vision and cone function till late in the disease. A knock-in mouse model with the c.498_499insC mutation in Mfrp (Mfrp KI/KI) was developed to understand the effects of these mutations in the retina. The model shares many of the features of human clinical disease, including reduced axial length, hyperopia, retinal degeneration, retinal pigment epithelial atrophy, and decreased electrophysiological responses. In addition, the eyes of these mice had a significantly greater refractive error (p < 0.01) when compared to age-matched wild-type control animals. Administration of recombinant adeno-associated virus-mediated Mfrp gene therapy significantly prevented thinning from retinal neurodegeneration (p < 0.005) and preserved retinal electrophysiology (p < 0.001) when treated eyes were compared to contralateral sham-treated control eyes. The Mfrp KI/KI mice will serve as a useful tool to model human disease and point to a potential gene therapeutic approach for patients with preserved vision and electrophysiological responses in MFRP-related retinopathy.


Asunto(s)
Predisposición Genética a la Enfermedad , Terapia Genética , Proteínas de la Membrana/genética , Enfermedades de la Retina/genética , Animales , Biomarcadores , Dependovirus/genética , Modelos Animales de Enfermedad , Electrorretinografía , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Fenotipo , Enfermedades de la Retina/diagnóstico , Epitelio Pigmentado de la Retina/metabolismo , Tomografía de Coherencia Óptica
4.
Ophthalmic Genet ; 39(1): 73-79, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28945494

RESUMEN

PURPOSE: To investigate the clinical characteristics and genetic basis of inherited retinal degeneration (IRD) in six unrelated pedigrees from Mexico. METHODS: A complete ophthalmic evaluation including measurement of visual acuities, Goldman kinetic or Humphrey dynamic perimetry, Amsler test, fundus photography, and color vision testing was performed. Family history and blood samples were collected from available family members. DNA from members of two pedigrees was examined for known mutations using the APEX ARRP genotyping microarray and one pedigree using the APEX LCA genotyping microarray. The remaining three pedigrees were analyzed using a custom-designed targeted capture array covering the exons of 233 known retinal degeneration genes. Sequencing was performed on Illumina HiSeq. Reads were mapped against hg19, and variants were annotated using GATK and filtered by exomeSuite. Segregation and ethnicity-matched control sample analyses were performed by dideoxy sequencing. RESULTS: Six pedigrees with IRD were analyzed. Nine rare or novel, potentially pathogenic variants segregating with the phenotype were detected in IMPDH1, USH2A, RPE65, ABCA4, and FAM161A genes. Among these, six were known mutations while the remaining three changes in USH2A, RPE65, and FAM161A genes have not been previously reported to be associated with IRD. Analysis of 100 ethnicity-matched controls did not detect the presence of these three novel variants indicating, these are rare variants in the Mexican population. CONCLUSIONS: Screening patients diagnosed with IRD from Mexico identified six known mutations and three rare or novel potentially damaging variants in IMPDH1, USH2A, RPE65, ABCA4, and FAM161A genes that segregated with disease.


Asunto(s)
Proteínas del Ojo/genética , Mutación , Degeneración Retiniana/genética , Transportadoras de Casetes de Unión a ATP/genética , Adolescente , Adulto , Anciano , Preescolar , Análisis Mutacional de ADN , Proteínas de la Matriz Extracelular/genética , Femenino , Determinismo Genético , Técnicas de Genotipaje , Humanos , IMP Deshidrogenasa/genética , Masculino , México/epidemiología , Persona de Mediana Edad , Linaje , Fenotipo , Degeneración Retiniana/etnología , Secuenciación del Exoma , cis-trans-Isomerasas/genética
6.
Genes (Basel) ; 8(9)2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837078

RESUMEN

Retinitis pigmentosa (RP) causes progressive photoreceptor loss resulting from mutations in over 80 genes. This study identified the genetic cause of RP in three members of a non-consanguineous pedigree. Detailed ophthalmic evaluation was performed in the three affected family members. Whole exome sequencing (WES) and whole genome sequencing (WGS) were performed in the three affected and the two unaffected family members and variants were filtered to detect rare, potentially deleterious variants segregating with disease. WES and WGS did not identify potentially pathogenic variants shared by all three affected members. However, WES identified a previously reported homozygous nonsense mutation in KIZ (c.226C>T, p.Arg76*) in two affected sisters, but not in their affected second cousin. WGS revealed a novel 1.135 kb homozygous deletion in a retina transcript of C21orf2 and a novel 30.651 kb heterozygous deletion in CACNA2D4 in the affected second cousin. The sisters with the KIZ mutation carried no copies of the C21orf2 or CACNA2D4 deletions, while the second cousin with the C21orf2 and CACNA2D4 deletions carried no copies of the KIZ mutation. This study identified two independent, homozygous mutations in genes previously reported in autosomal recessive RP in a non-consanguineous family, and demonstrated the value of WGS when WES fails to identify likely disease-causing mutations.

7.
Physiol Genomics ; 49(4): 216-229, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130426

RESUMEN

Our purpose was to identify causative mutations and characterize the phenotype associated with the genotype in 10 unrelated families with autosomal recessive retinal degeneration. Ophthalmic evaluation and DNA isolation were carried out in 10 pedigrees with inherited retinal degenerations (IRD). Exomes of probands from eight pedigrees were captured using Nimblegen V2/V3 or Agilent V5+UTR kits, and sequencing was performed on Illumina HiSeq. The DHDDS gene was screened for mutations in the remaining two pedigrees with Ashkenazi Jewish ancestry. Exome variants were filtered to detect candidate causal variants using exomeSuite software. Segregation and ethnicity-matched control sample analysis were performed by dideoxy sequencing. Retinal histology of a patient with DHDDS mutation was studied by microscopy. Genetic analysis identified six known mutations in ABCA4 (p.Gly1961Glu, p.Ala1773Val, c.5461-10T>C), RPE65 (p.Tyr249Cys, p.Gly484Asp), PDE6B (p.Lys706Ter) and DHDDS (p.Lys42Glu) and ten novel potentially pathogenic variants in CERKL (p.Met323Val fsX20), RPE65 (p.Phe252Ser, Thr454Leu fsX31), ARL6 (p.Arg121His), USH2A (p.Gly3142Ter, p.Cys3294Trp), PDE6B (p.Gln652Ter), and DHDDS (p.Thr206Ala) genes. Among these, variants/mutations in two separate genes were observed to segregate with IRD in two pedigrees. Retinal histopathology of a patient with a DHDDS mutation showed severe degeneration of retinal layers with relative preservation of the retinal pigment epithelium. Analysis of exome variants in ten pedigrees revealed nine novel potential disease-causing variants and nine previously reported homozygous or compound heterozygous mutations in the CERKL, ABCA4, RPE65, ARL6, USH2A, PDE6B, and DHDDS genes. Mutations that could be sufficient to cause pathology were observed in more than one gene in one pedigree.


Asunto(s)
Exoma/genética , Genotipo , Fenotipo , Degeneración Retiniana/genética , Factores de Ribosilacion-ADP/genética , Transportadoras de Casetes de Unión a ATP/genética , Transferasas Alquil y Aril/genética , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Mutación/genética , Linaje , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Síndromes de Usher/genética , cis-trans-Isomerasas/genética
8.
Genet Test Mol Biomarkers ; 21(2): 66-73, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28005406

RESUMEN

AIM: To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). METHODS: After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). RESULTS: Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). CONCLUSIONS: Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.


Asunto(s)
Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bestrofinas , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Análisis Mutacional de ADN/métodos , Exones , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Estudios de Asociación Genética , Asesoramiento Genético , Pruebas Genéticas/métodos , Heterocigoto , Humanos , Masculino , Técnicas de Diagnóstico Molecular/métodos , Mutación , Periferinas/genética , Periferinas/metabolismo , Retinitis Pigmentosa/genética , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo
9.
Physiol Genomics ; 48(12): 922-927, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27764769

RESUMEN

While more than 250 genes are known to cause inherited retinal degenerations (IRD), nearly 40-50% of families have the genetic basis for their disease unknown. In this study we sought to identify the underlying cause of IRD in a family by whole genome sequence (WGS) analysis. Clinical characterization including standard ophthalmic examination, fundus photography, visual field testing, electroretinography, and review of medical and family history was performed. WGS was performed on affected and unaffected family members using Illumina HiSeq X10. Sequence reads were aligned to hg19 using BWA-MEM and variant calling was performed with Genome Analysis Toolkit. The called variants were annotated with SnpEff v4.11, PolyPhen v2.2.2, and CADD v1.3. Copy number variations were called using Genome STRiP (svtoolkit 2.00.1611) and SpeedSeq software. Variants were filtered to detect rare potentially deleterious variants segregating with disease. Candidate variants were validated by dideoxy sequencing. Clinical evaluation revealed typical adolescent-onset recessive retinitis pigmentosa (arRP) in affected members. WGS identified about 4 million variants in each individual. Two rare and potentially deleterious compound heterozygous variants p.Arg281Cys and p.Arg487* were identified in the gene ATP/GTP binding protein like 5 (AGBL5) as likely causal variants. No additional variants in IRD genes that segregated with disease were identified. Mutation analysis confirmed the segregation of these variants with the IRD in the pedigree. Homology models indicated destabilization of AGBL5 due to the p.Arg281Cys change. Our findings establish the involvement of mutations in AGBL5 in RP and validate the WGS variant filtering pipeline we designed.


Asunto(s)
Carboxipeptidasas/genética , Retinitis Pigmentosa/genética , Adolescente , Análisis Mutacional de ADN , Electrorretinografía/métodos , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Mutación/genética , Linaje , Degeneración Retiniana/genética , Secuenciación Completa del Genoma/métodos , Adulto Joven
10.
PLoS One ; 10(9): e0136561, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26352687

RESUMEN

PURPOSE: To define the molecular basis of retinal degeneration in consanguineous Pakistani pedigrees with early onset retinal degeneration. METHODS: A cohort of 277 individuals representing 26 pedigrees from the Punjab province of Pakistan was analyzed. Exomes were captured with commercial kits and sequenced on an Illumina HiSeq 2500. Candidate variants were identified using standard tools and analyzed using exomeSuite to detect all potentially pathogenic changes in genes implicated in retinal degeneration. Segregation analysis was performed by dideoxy sequencing and novel variants were additionally investigated for their presence in ethnicity-matched controls. RESULTS: We identified a total of nine causal mutations, including six novel variants in RPE65, LCA5, USH2A, CNGB1, FAM161A, CERKL and GUCY2D as the underlying cause of inherited retinal degenerations in 13 of 26 pedigrees. In addition to the causal variants, a total of 200 variants each observed in five or more unrelated pedigrees investigated in this study that were absent from the dbSNP, HapMap, 1000 Genomes, NHLBI ESP6500, and ExAC databases were identified, suggesting that they are common in, and unique to the Pakistani population. CONCLUSIONS: We identified causal mutations associated with retinal degeneration in nearly half of the pedigrees investigated in this study through next generation whole exome sequencing. All novel variants detected in this study through exome sequencing have been cataloged providing a reference database of variants common in, and unique to the Pakistani population.


Asunto(s)
Etnicidad/genética , Exoma/genética , Mutación , Degeneración Retiniana/genética , Edad de Inicio , Consanguinidad , Electrorretinografía , Proteínas del Ojo/genética , Femenino , Fondo de Ojo , Genes Recesivos , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Pakistán , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Degeneración Retiniana/etnología , Alineación de Secuencia , Análisis de Secuencia de ARN
11.
Mol Vis ; 21: 273-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814825

RESUMEN

PURPOSE: A spontaneous frameshift mutation, c.3481delC, in the Crb1 gene is the underlying cause of dysplasia and retinal degeneration in rd8 mice. The rd8 mutation is found in C57BL/6N but not in C57BL/6J mouse sub-strains. The development of ocular pathology in single knockout Ccl2-/-, Cx3cr1-/- and in double knockout Ccl2-/-, Cx3cr1-/- mice raised on a C57BL/6 background has been reported to depend on the presence of a rd8 mutation. In this study, we investigated the influence of the rd8 mutation on the retinal pathology that we previously described in the late-onset retinal degeneration (L-ORD) mouse model with a heterozygous S163R mutation in the C1q-tumor necrosis factor-related protein-5Ctrp5+/- gene that was generated on a C57BL/6J background. METHODS: Mouse lines carrying the Ctrp5 S163R and rd8 mutations (Ctrp5+/-;rd8/rd8), corresponding controls without the rd8 mutation (Ctrp5+/-;wt/wt), and wild-type mice with and without the rd8 mutation (Wtrd8/rd8 and Wtwt/wt, respectively) were generated by systematic breeding of mice in our L-ORD mouse colony. Genotyping the mice for the rd8 (del C at nt3481 in Crb1) and Ctrp5 S163R mutations was performed with allelic PCR or sequencing. Retinal morphology was studied with fundus imaging, histology, light microscopy, electron microscopy, and immunohistochemistry. RESULTS: Genotype analysis of the mice in L-ORD mouse colony detected the rd8 mutation in the homozygous and heterozygous state. Fundus imaging of wild-type mice without the rd8 mutation (Wtwt/wt) revealed no autofluorescence (AF) spots up to 6-8 months and few AF spots at 21 months. However, the accumulation of AF lesions accelerated with age in the Ctrp5+/- mice that lack the rd8 mutation (Ctrp5+/-;wt/wt). The number of AF lesions was significantly increased (p<0.001), and they were small and uniformly distributed throughout the retina in the 21-month-old Ctrp5+/-;wt/wt mice when compared to the age-matched controls. Wild-type and Ctrp5+/- mice with the rd8 mutation (Wtrd8/rd8 and Ctrp5+/-;rd8/rd8, respectively) revealed an integrated retinal architecture with well-defined outer segments/inner segments (OS/IS), outer nuclear layer (ONL), outer plexiform layer (OPL), and inner nuclear layer (INL). The presence of pseudorosette structures reported in the rd8 mice between the ONL and the INL in the ventral quadrant of the retina was not observed in all genotypes studied. Further, the external limiting membrane was continuous in the Ctrp5+/-;rd8/rd8 and Wtrd8/rd8 mice. Evaluation of the retinal phenotype revealed that the Ctrp5+/-;wt/wt mice developed characteristic L-ORD pathology including age-dependent accumulation of AF spots, development of sub-retinal, sub-RPE, and basal laminar deposits, and Bruch's membrane abnormalities at older age, while these changes were not observed in the age-matched littermate WTwt/wt mice. CONCLUSIONS: The Wtrd8/rd8 and Ctrp5+/-;rd8/rd8 mice raised on C57BL/6J did not develop early onset retinal changes that are characteristic of the rd8 phenotype, supporting the hypothesis that manifestation of rd8-associated pathology depends on the genetic background. The retinal pathology observed in mice with the Ctrp5+/-;wt/wt genotype is consistent with the L-ORD phenotype observed in patients and with the phenotype we described previously. The lack of rd8-associated retinal pathology in the Ctrp5+/-;wt/wt mouse model raised on the C57BL/6J background and the development of the L-ORD phenotype in these mice in the presence and absence of the rd8 mutation suggests that the pathology observed in the Ctrp5+/-;wt/wt mice is primarily associated with the S163R mutation in the Ctrp5 gene.


Asunto(s)
Envejecimiento/genética , Mutación del Sistema de Lectura , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Retina/metabolismo , Degeneración Retiniana/genética , Envejecimiento/patología , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Imagen Óptica , Fenotipo , Retina/patología , Degeneración Retiniana/patología
12.
Invest Ophthalmol Vis Sci ; 55(9): 5510-21, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25082885

RESUMEN

PURPOSE: To analyze the genetic test results of probands referred to eyeGENE with a diagnosis of hereditary maculopathy. METHODS: Patients with Best macular dystrophy (BMD), Doyne honeycomb retinal dystrophy (DHRD), Sorsby fundus dystrophy (SFD), or late-onset retinal degeneration (LORD) were screened for mutations in BEST1, EFEMP1, TIMP3, and CTRP5, respectively. Patients with pattern dystrophy (PD) were screened for mutations in PRPH2, BEST1, ELOVL4, CTRP5, and ABCA4; patients with cone-rod dystrophy (CRD) were screened for mutations in CRX, ABCA4, PRPH2, ELOVL4, and the c.2513G>A p.Arg838His variant in GUCY2D. Mutation analysis was performed by dideoxy sequencing. Impact of novel variants was evaluated using the computational tool PolyPhen. RESULTS: Among the 213 unrelated patients, 38 had BMD, 26 DHRD, 74 PD, 8 SFD, 6 LORD, and 54 CRD; six had both PD and BMD, and one had no specific clinical diagnosis. BEST1 variants were identified in 25 BMD patients, five with novel variants of unknown significance (VUS). Among the five patients with VUS, one was diagnosed with both BMD and PD. A novel EFEMP1 variant was identified in one DHRD patient. TIMP3 novel variants were found in two SFD patients, PRPH2 variants in 14 PD patients, ABCA4 variants in four PD patients, and p.Arg838His GUCY2D mutation in six patients diagnosed with dominant CRD; one patient additionally had a CRX VUS. ABCA4 mutations were identified in 15 patients with recessive CRD. CONCLUSIONS: Of the 213 samples, 55 patients (26%) had known causative mutations, and 13 (6%) patients had a VUS that was possibly pathogenic. Overall, selective screening for mutations in BEST1, PRPH2, and ABCA4 would likely yield the highest success rate in identifying the genetic basis for macular dystrophy phenotypes. Because of the overlap in phenotypes between BMD and PD, it would be beneficial to screen genes associated with both diseases.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Pruebas Genéticas/métodos , Técnicas de Diagnóstico Molecular , Mutación , Distrofias Retinianas/genética , Trastornos de la Visión/etiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Asociación Genética , Investigación Genética , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Campos Visuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...