Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 118(7): 1680-1692, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33956076

RESUMEN

Among several known RNA modifications, N6-methyladenosine (m6A) is the most studied RNA epitranscriptomic modification and controls multiple cellular functions during development, differentiation, and disease. Current research advancements have made it possible to examine the regulatory mechanisms associated with RNA methylation and reveal its functional consequences in the pathobiology of many diseases, including heart failure. m6A methylation has been described both on coding (mRNA) and non-coding RNA species including rRNA, tRNA, small nuclear RNA and circular RNAs. The protein components which catalyze the m6A methylation are termed methyltransferase or 'm6A writers'. The family of proteins that recognize this methylation are termed 'm6A readers' and finally the enzymes involved in the removal of a methyl group from RNA are known as demethylases or 'm6A erasers'. At the cellular level, different components of methylation machinery are tightly regulated by many factors to maintain the m6A methylation dynamics. The m6A methylation process impacts different stages of mRNA metabolism and the biogenesis of long non-coding RNA and miRNA. Although, mRNA methylation was initially described in the 1970s, its regulatory roles in various diseases, including cardiovascular diseases are broadly unexplored. Recent investigations suggest the important role of m6A mRNA methylation in both hypertrophic and ischaemic heart diseases. In the present review, we evaluate the significance of m6A methylation in the cardiovascular system, in cardiac homeostasis and disease, all of which may help to improve therapeutic intervention for the treatment of heart failure. RNA methylation in cardiovascular diseases: altered m6A RNA (coding and non-coding RNA) methylation is identified during different cardiovascular diseases. Increased cardiac hypertrophy is observed following METTL3 overexpression. In contrast, reduced FTO level was seen in mice following myocardial infarction. Increased cardiac fibroblasts activation or increased atherosclerotic plaques were also co-related with m6A RNA methylation.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Insuficiencia Cardíaca , ARN Largo no Codificante , Animales , Biología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Front Cardiovasc Med ; 8: 676267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33969024

RESUMEN

Background: Endothelial cells (ECs) play a critical role in the maintenance of vascular homeostasis and in heart function. It was shown that activated fibroblast-derived exosomes impair cardiomyocyte function in hypertrophic heart, but their effect on ECs is not yet clear. Thus, we hypothesized that activated cardiac fibroblast-derived exosomes (FB-Exo) mediate EC dysfunction, and therefore modulation of FB-exosomal contents may improve endothelial function. Methods and Results: Exosomes were isolated from cardiac fibroblast (FB)-conditioned media and characterized by nanoparticle tracking analysis and electron microscopy. ECs were isolated from mouse heart. ECs were treated with exosomes isolated from FB-conditioned media, following FB culture with TGF-ß1 (TGF-ß1-FB-Exo) or PBS (control) treatment. TGF-ß1 significantly activated fibroblasts as shown by increase in collagen type1 α1 (COL1α1), periostin (POSTN), and fibronectin (FN1) gene expression and increase in Smad2/3 and p38 phosphorylation. Impaired endothelial cell function (as characterized by a decrease in tube formation and cell migration along with reduced VEGF-A, Hif1α, CD31, and angiopoietin1 gene expression) was observed in TGF-ß1-FB-Exo treated cells. Furthermore, TGF-ß1-FB-Exo treated ECs showed reduced cell proliferation and increased apoptosis as compared to control cells. TGF-ß1-FB-Exo cargo analysis revealed an alteration in fibrosis-associated miRNAs, including a significant increase in miR-200a-3p level. Interestingly, miR-200a-3p inhibition in activated FBs, alleviated TGF-ß1-FB-Exo-mediated endothelial dysfunction. Conclusions: Taken together, this study demonstrates an important role of miR-200a-3p enriched within activated fibroblast-derived exosomes on endothelial cell biology and function.

3.
Front Cardiovasc Med ; 8: 817304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127873

RESUMEN

BACKGROUND: Endothelial cells dysfunction has been reported in many heart diseases including acute myocardial infarction, and atherosclerosis. The molecular mechanism for endothelial dysfunction in the heart is still not clearly understood. We aimed to study the role of m6A RNA demethylase alkB homolog 5 (ALKBH5) in ECs angiogenesis during ischemic injury. METHODS AND RESULTS: ECs were treated with ischemic insults (lipopolysaccharide and 1% hypoxia) to determine the role of ALKBH5 in ECs angiogenesis. siRNA mediated ALKBH5 gene silencing was used for examining the loss of function. In this study, we report that ALKBH5 levels are upregulated following ischemia and are associated with maintaining ischemia-induced ECs angiogenesis. To decipher the mechanism of action, we found that ALKBH5 is required to maintain eNOS phosphorylation and SPHK1 protein levels. ALKBH5 silencing alone or with ischemic stress significantly increased SPHK1 m6A mRNA methylation. In contrast, METTL3 (RNA methyltransferase) overexpression resulted in the reduced expression of SPHK1. CONCLUSION: We reported that ALKBH5 helps in the maintenance of angiogenesis in endothelial cells following acute ischemic stress via reduced SPHK1 m6A methylation and downstream eNOS-AKT signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...