RESUMEN
Functions of vitellogenins have been in the limelight of fish reproductive physiology research for decades. The Vtg system of acanthomorph teleosts consists of two complete forms of Vtgs (VtgAa and VtgAb) and an incomplete form, VtgC. Insufficient uptake and processing of Vtgs and their yolk proteins lead to inadequate oocyte hydration ensuing failure in acquisition of egg buoyancy and early developmental deficiencies. This review presents a summary of our studies on utilization of multiple Vtgs in species with different egg buoyancy characteristics, as examples. Studies of moronids revealed limited degradation of all three forms of lipovitellin heavy chain derived from their three respective forms of Vtg, by which they contribute to the free amino acid pool driving oocyte hydration during oocyte maturation. In later studies, CRISPR/Cas9 was employed to invalidate zebrafish type I, type II and type III Vtgs, which are orthologs of acanthamorph VtgAa, VtgAb and VtgC, respectively. Results revealed type I Vtg to have essential developmental and nutritional functions in both late embryos and larvae. Genomic disturbance of type II Vtg led to high mortalities during the first 24 h of embryonic development. Despite being a minor form of Vtg in zebrafish and most other species, type III Vtg was also found to contribute essentially to the developmental potential of zebrafish zygotes and early embryos. Apart from severe effects on progeny survival, these studies also disclosed previously unreported regulatory effects of Vtgs on fecundity and fertility, and on embryo hatching. We recently utilized parallel reactions monitoring based liquid chromatography tandem mass spectrometry to assess the processing and utilization of lipovitellins derived from different forms of Vtg in Atlantic halibut and European plaice. Results showed the Lv heavy chain of VtgAa (LvHAa) to be consumed during oocyte maturation and the Lv light chain of VtgAb (LvLAb) to be utilized specifically during late larval stages, while all remaining YPs (LvLAa, LvHAb, LvHC, and LvLC) were utilized during or after hatching up until first feeding in halibut. In plaice, all YPs except LvHAa, which similarly to halibut supports oocyte maturation, are utilized from late embryo to late larval development up until first feeding. The collective findings from these studies affirm substantial disparity in modes of utilization of different types of Vtgs among fish species with various egg buoyancy characteristics, and they reveal previously unknown regulatory functions of Vtgs in maintenance of reproductive assets such as maternal fecundity and fertility, and in embryonic hatching. Despite the progress that has been made over the past two decades by examining multiple Vtgs and their functions, a higher complexity of these systems with much greater diversity between species in modes of Vtg utilization is now evident. Further research is needed to reveal novel ways each species has evolved to utilize these complex multiple Vtg systems and to discover unifying principles for this evolution in fishes of diverse lineages, habitats and life history characteristics.
Asunto(s)
Perciformes , Vitelogeninas , Animales , Vitelogeninas/metabolismo , Pez Cebra/metabolismo , Peces/metabolismo , Oocitos/metabolismo , Oogénesis/genética , Perciformes/metabolismoRESUMEN
Egg quality is a complex biological trait and a major determinant of reproductive fitness in all animals. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading biomedical model for early development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were sampled immediately after spawning and used to create pooled or replicated sample sets whose protein extracts were subjected to different levels of fractionation before liquid chromatography and tandem mass spectrometry. Obtained spectra were searched against a zebrafish proteome database and detected proteins were annotated, categorized and quantified based on normalized spectral counts. Manually curated and automated enrichment analyses revealed poor quality eggs to be deficient of proteins involved in protein synthesis and energy and lipid metabolism, and of some vitellogenin products and lectins, and to have a surfeit of proteins involved in endo-lysosomal activities, autophagy, and apoptosis, and of some oncogene products, lectins and egg envelope proteins. Results of pathway and network analyses suggest that this aberrant proteomic profile results from failure of oocytes giving rise to poor quality eggs to properly transit through final maturation, and implicated Wnt signaling in the etiology of this defect. Quantitative comparisons of abundant proteins in good versus poor quality eggs revealed 17 candidate egg quality markers. Thus, the zebrafish egg proteome is clearly linked to embryo developmental potential, a phenomenon that begs further investigation to elucidate the root causes of poor egg quality, presently a serious and intractable problem in livestock and human reproductive medicine.
Asunto(s)
Biomarcadores/metabolismo , Óvulo/metabolismo , Proteómica , Pez Cebra/metabolismo , Animales , Cromatografía Liquida , Espectrometría de Masas en TándemRESUMEN
To evaluate potential involvement of clathrin in endocytosis of vitellogenin (Vtg) by teleost oocytes, cDNAs encoding clathrin heavy chain (cltc) were cloned from ovaries of cutthroat trout. Quantitative PCR revealed three types of cltc (cltc-a1, cltc-a2, cltc-b) to be expressed in 10 different tissues including the ovary. The cltc-a1 alone exhibited a significant decrease in ovarian expression during vitellogenesis; this was correlated with a corresponding decrease in transcripts encoding the major Vtg receptor (Vtgr). No development-related changes in ovarian cltc-a2 or cltc-b transcript levels were observed. In situ hybridization revealed a strong ctlc signal in pre-vitellogenic oocytes, but not in vitellogenic oocytes. Western blotting using a rabbit antiserum (a-Cltc) raised against a recombinant Cltc preparation detected a polypeptide band with an apparent mass of ~170kDa in vitellogenic ovary extracts. Immunohistochemistry using a-Cltc revealed Cltc to be uniformly distributed throughout the ooplasm of perinucleolus stage oocytes, translocated to the periphery of lipid droplet stage oocytes, and localized to the oolemma during vitellogenesis. These patterns of cltc/Cltc distribution and abundance during oogenesis, which are identical to those previously reported for vtgr/Vtgr in this species, constitute the first empirical evidence that cltc-a1/Cltc-a1 is involved in Vtg endocytosis via the Vtgr in teleost fish.
Asunto(s)
Clatrina/metabolismo , Endocitosis , Oncorhynchus/metabolismo , Oocitos/citología , Ovario/metabolismo , Vitelogeninas/metabolismo , Animales , Femenino , HumanosRESUMEN
Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.
Asunto(s)
Lubina/fisiología , Proteínas del Huevo/metabolismo , Regulación de la Expresión Génica , Hígado/metabolismo , Ovario/metabolismo , Procesamiento Proteico-Postraduccional , Vitelogeninas/metabolismo , Animales , Acuicultura , Lubina/sangre , Proteínas del Huevo/sangre , Proteínas del Huevo/química , Proteínas del Huevo/genética , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Mar Mediterráneo , Ovario/efectos de los fármacos , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Isoformas de Proteínas/sangre , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Señales de Clasificación de Proteína/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Terminología como Asunto , Vitelogénesis/efectos de los fármacos , Vitelogeninas/sangre , Vitelogeninas/química , Vitelogeninas/genéticaRESUMEN
Multiple ovarian membrane proteins that bind vitellogenin (Vtg) have been detected in teleosts. One of these Vtg receptors was recently identified as low-density lipoprotein receptor-related protein 13 (lrp13/Lrp13) in perciform species, but little is known about this Vtg receptor in salmonid fish. In this study, a cDNA encoding a putative Vtg receptor with 13+1 ligand binding repeats (lr13+1) was cloned from the ovary, and identified as an lrp13 ortholog for cutthroat trout (Oncorhynchus clarki). This lrp13 was predominantly expressed in the pre-vitellogenic stage ovary, and its expression decreased during vitellogenesis. Ovarian localization of Lrp13 was observed by immunohistochemistry using specific antiserum against recombinant Lrp13. Lrp13 immunoreactivity was observed at the oolemma, throughout the zona radiata, and within the perivitelline space between the zona radiata and granulosa cells in ovarian follicles at both the lipid-droplet and vitellogenic stages of growth-an expression pattern that mimics that of a lr8/LR8-type Vtg receptor in this species and of lrp13/Lrp13 in Morone species. Six discrete Vtg-binding proteins were detected in cutthroat trout ovarian membrane proteins when probing with a digoxygenin-labeled salmonid A-type Vtg (VtgAs) followed by chemiluminescent ligand detection. Western blotting using the anti-Lrp13 serum revealed a broad signal consisting of two proteins with masses ranging from â¼190 to â¼210 kDa, which corresponded with some of the VtgA-binding proteins. These findings suggest that, in addition to lr8/LR8, lrp13/Lrp13 acts as a VtgA receptor in trout.
Asunto(s)
Proteínas de Peces , Proteínas Relacionadas con Receptor de LDL , Oncorhynchus , Ovario/metabolismo , Vitelogeninas/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Femenino , Proteínas de Peces/biosíntesis , Proteínas de Peces/genética , Proteínas Relacionadas con Receptor de LDL/biosíntesis , Proteínas Relacionadas con Receptor de LDL/genética , Datos de Secuencia Molecular , Oncorhynchus/genética , Oncorhynchus/metabolismo , Ovario/citología , Vitelogeninas/genéticaRESUMEN
Maternal mRNA transcripts deposited in growing oocytes regulate early development and are under intensive investigation as determinants of egg quality. The research has evolved from single gene studies to microarray and now RNA-Seq analyses in which mRNA expression by virtually every gene can be assessed and related to gamete quality. Such studies have mainly focused on genes changing two- to several-fold in expression between biological states, and have identified scores of candidate genes and a few gene networks whose functioning is related to successful development. However, ever-increasing yields of information from high throughput methods for detecting transcript abundance have far outpaced progress in methods for analyzing the massive quantities of gene expression data, and especially for meaningful relation of whole transcriptome profiles to gamete quality. We have developed a new approach to this problem employing artificial neural networks and supervised machine learning with other novel bioinformatics procedures to discover a previously unknown level of ovarian transcriptome function at which minute changes in expression of a few hundred genes is highly predictive of egg quality. In this paper, we briefly review the progress in transcriptomics of fish egg quality and discuss some future directions for this field of study.
Asunto(s)
Acuicultura/métodos , Peces/genética , Óvulo/metabolismo , Transcriptoma/genética , Animales , Desarrollo Embrionario/genética , Peces/embriología , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Fish egg yolk is largely derived from vitellogenins, which are synthesized in the liver, taken up from the maternal circulation by growing oocytes via receptor-mediated endocytosis and enzymatically processed into yolk proteins that are stored in the ooplasm. Lipid droplets are another major component of fish egg yolk, and these are mainly composed of neutral lipids that may originate from maternal plasma lipoproteins. This review aims to briefly summarize our current understanding of the molecular mechanisms underlying yolk formation in fishes. A hypothetical model of oocyte growth is proposed based on recent advances in our knowledge of fish yolk formation.
Asunto(s)
Proteínas del Huevo/metabolismo , Yema de Huevo/metabolismo , Peces/metabolismo , Gotas Lipídicas/metabolismo , Ovario/metabolismo , Vitelogeninas/metabolismo , Animales , FemeninoRESUMEN
The estrogen-inducible egg yolk precursor, vitellogenin, of the European sea bass (Dicentrarchus labrax) has received considerable scientific attention by virtue of its central importance in determination of oocyte growth and egg quality in this important aquaculture species. However, the multiplicity of vitellogenins in the sea bass has only recently been examined. Recent cloning and homology analyses have revealed that the sea bass possesses the three forms of vitellogenin, VtgAa, VtgAb and VtgC, reported to occur in some other highly evolved teleosts. Progress has been made in assessing the relative abundance and special structural features of the three Vtgs and their likely roles in oocyte maturation and embryonic nutrition. This report discusses these findings in the context of our prior knowledge of vitellogenesis in this species and of the latest advances in our understanding of the evolution and function of multiple Vtgs in acanthomorph fishes.
Asunto(s)
Lubina/metabolismo , Yema de Huevo/metabolismo , Estrógenos/farmacología , Vitelogeninas/metabolismo , Animales , Yema de Huevo/efectos de los fármacos , Modelos Moleculares , Vitelogénesis/efectos de los fármacos , Vitelogeninas/químicaRESUMEN
Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism.
Asunto(s)
Lubina , Proteínas de Peces/metabolismo , Receptores de Lipoproteína/metabolismo , Vitelogeninas/metabolismo , Animales , Clonación Molecular , Proteínas de Peces/química , Proteínas de Peces/genética , Regulación de la Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Unión Proteica , Transporte de Proteínas , Receptores de Lipoproteína/química , Receptores de Lipoproteína/genéticaRESUMEN
Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic "fingerprint". Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness.
Asunto(s)
Lubina/metabolismo , Perfilación de la Expresión Génica/métodos , Ovario/metabolismo , Óvulo/metabolismo , Transcriptoma/genética , Animales , Inteligencia Artificial , Lubina/embriología , Femenino , Redes Neurales de la Computación , Ovario/embriologíaRESUMEN
We quantified three vitellogenins (VtgAa, VtgAb, VtgC) or their derived yolk proteins (YPs) in the liver, plasma, and ovary during pre-vitellogenic (PreVG), mid-vitellogenic (MVG), and late-vitellogenic (LVG) oocyte growth and during post-vitellogenesis (PostVG) in the striped bass (Morone saxatilis) using label-free quantitative mass spectrometry (MS). Western blotting of the samples using antisera raised against gray mullet (Mugil cephalus) lipovitellins derived from VtgAa, VtgAb, and VtgC confirmed the MS results. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed liver as the primary site of expression for all three Vtgs, with extra-hepatic transcription weakly detected in ovary, foregut, adipose tissue, and brain. Quantitative real-time RT-PCR confirmed vtgAb to be primarily expressed in liver and VtgAb proteins were predominant in liver and plasma from MVG to PostVG. However, the primary period of deposition into oocytes of VtgAb occurred up until MVG, whereas VtgAa was primarily deposited from MVG to LVG. The VtgC was gradually taken up by oocytes throughout vitellogenesis and was detected at trace levels in plasma. The ratio of yolk proteins derived from VtgAa, VtgAb, VtgC (YPAa/YPAb/YPC) in PostVG ovary is 1.4:1.4:1, which differs from ratios previously reported for other fish species in that YPC comprises a greater proportion of the egg yolk. Our results indicate that proportional accumulation of multiple Vtgs in the yolk may depend both on the precise rates of their hepatic secretion and specific uptake by oocytes. Furthermore, composition of the Vtg-derived yolk may vary among Acanthomorph fishes, perhaps reflecting their different early life histories and reproductive strategies.
Asunto(s)
Lubina/metabolismo , Proteínas del Huevo/metabolismo , Vitelogénesis/fisiología , Vitelogeninas/metabolismo , Animales , Western Blotting , Proteínas del Huevo/análisis , Proteínas del Huevo/biosíntesis , Proteínas del Huevo/fisiología , Electroforesis en Gel de Poliacrilamida , Femenino , Hígado/química , Espectrometría de Masas , Ovario/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Vitelogeninas/análisis , Vitelogeninas/biosíntesis , Vitelogeninas/fisiologíaRESUMEN
A cDNA encoding a vitellogenin receptor with 8 ligand binding repeats (vtgr) was cloned from ovaries of the cutthroat trout, Oncorhynchus clarki. In situ hybridization and quantitative PCR analyses revealed that the main site of vtgr mRNA expression was the oocytes. Expression was strongly detected in perinucleous stage oocytes, gradually decreased as oocytes grew, and became hardly detectable in vitellogenic oocytes. A rabbit antibody (a-Vtgr) was raised against a recombinant Vtgr protein in order to immunologically detect and localize Vtgr within the ovarian follicles. Western blotting using a-Vtgr detected a bold band with an apparent mass of ~95-105kDa in an ovarian preparation that also bound Sakhalin taimen, Hucho perryi, vitellogenin in ligand blots. Immunohistochemistry using a-Vtgr revealed that the Vtgr was uniformly distributed throughout the ooplasm of perinucleolus stage oocytes, subsequently translocated to the periphery of lipid droplet stage oocytes, and became localized to the oolemma during vitellogenesis. We provide the first characterization of Vtgr at both the transcriptional and the translational levels in the cutthroat trout, and our results suggest that this receptor is involved in uptake of Vtg by oocytes of this species.
Asunto(s)
Proteínas del Huevo/genética , Oocitos/metabolismo , Ovario/metabolismo , Receptores de Superficie Celular/genética , Trucha/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Proteínas del Huevo/biosíntesis , Femenino , Regulación del Desarrollo de la Expresión Génica , Ligandos , Oocitos/crecimiento & desarrollo , Oogénesis , Folículo Ovárico/metabolismo , Unión Proteica , Receptores de Superficie Celular/biosíntesis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Trucha/crecimiento & desarrollo , Vitelogénesis/genéticaRESUMEN
Teleost fish eggs contain a substantial yolk mass consisting of lipids and proteins that provides essential nutrients for embryonic and larval development. The polar lipid and protein components of the yolk are delivered to oocytes by circulating vitellogenins, however the source(s) of the neutral lipid remains unknown. We cloned a cDNA encoding an orthologue of low-density-lipoprotein receptor (LDLR) from the ovary of cutthroat trout, Oncorhynchus clarki (ct-Ldlr). Predominant expression of ct-ldlr mRNA was observed in the ovary and moderate expression was detected in intestine, gill and brain. The relative abundance of ct-ldlr transcripts was highest in early pre-vitellogenic ovaries and significantly decreased during vitellogenesis, followed by a slight increase during final maturation and in post-ovulatory follicles. In situ hybridization revealed an intense and evenly distributed localization of ct-ldlr transcripts in the ooplasm of pre-vitellogenic oocytes and these signals disappeared in vitellogenic follicles. Collectively, these results suggest that the Ldlr is involved in deposition of yolk lipids in cutthroat trout oocytes. The ct-ldlr transcripts also were detected in theca and granulosa cells, suggesting that this receptor may be involved in cholesterol uptake for ovarian steroidogenesis. This is the first report on partial characterization of an ldlr orthologue in any fish species.
Asunto(s)
Proteínas de Peces/genética , Folículo Ovárico/metabolismo , Receptores de LDL/genética , Trucha/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Femenino , Proteínas de Peces/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Oocitos/metabolismo , Especificidad de Órganos , Folículo Ovárico/citología , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de LDL/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Trucha/metabolismoRESUMEN
Large amounts of neutral lipids (NLs) are stored as lipid droplets in the ooplasm of fish oocytes, providing an essential energy resource for developing embryos and larvae. However, little is known about the origin of such lipids or about mechanisms underlying their uptake and accumulation in oocytes. We have proposed a model for this lipidation of teleost oocytes, as follows: very low density lipoprotein (Vldl) is metabolized by lipoprotein lipase (Lpl) outside and/or inside of the oocyte and the resulting fatty acids (FAs) are then utilized for de novo biosynthesis of NLs. As a first step toward verification of this model, cDNAs for genes encoding two types of Lpl, lpl and lpl2, were cloned from the ovary of cutthroat trout, Oncorhynchus clarki. Examination of Lpl polypeptide sequences deduced from the cDNAs revealed features similar to LPLs/Lpls in other species, including several conserved structural and functional domains. Both types of lpl mRNA were highly expressed in lipid storage tissues (e.g., adipose tissue, muscle, and ovary) and were predominantly expressed in the granulosa cells of ovarian follicles. Ovarian lpl1 mRNA levels showed a remarkable peak in April (early oocyte lipid droplet stage) and then decreased to low values sustained until November (mid-vitellogenesis), after which time a small peak in lpl1 gene expression was observed in December (late vitellogenesis). The mRNA levels of lpl2 also were elevated in April and were highest in June (late lipid droplet stage), but did not show other pronounced changes. These results suggest that, in the cutthroat trout, Vldl is metabolized by the action of Lpls in the granulosa cell layer to generate free FAs for uptake and biosynthesis of neutral lipids by growing oocytes.
Asunto(s)
Clonación Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Lipoproteína Lipasa/metabolismo , Oncorhynchus/metabolismo , Ovario/enzimología , Animales , Femenino , Lipoproteína Lipasa/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
We evaluated changes in the striped bass (Morone saxatilis) ovary proteome during the annual reproductive cycle using label-free quantitative mass spectrometry and a novel machine learning analysis based on K-means clustering and support vector machines. Modulated modularity clustering was used to group co-variable proteins into expression modules and Gene Ontology (GO) biological process and KEGG pathway enrichment analyses were conducted for proteins within those modules. We discovered that components of the ribosome along with translation initiation and elongation factors generally decrease as the annual ovarian cycle progresses toward ovulation, concomitant with a slight increase in components of the 26S-proteasome. Co-variation within more than one expression module of components from these two multi-protein complexes suggests that they are not only co-regulated, but that co-regulation occurs through more than one sub-network. These components also co-vary with subunits of the TCP-1 chaperonin system and enzymes of intermediary metabolic pathways, suggesting that protein folding and cellular bioenergetic state play important roles in protein synthesis and degradation. We provide further evidence to suggest that protein synthesis and degradation are intimately linked, and our results support function of a proteasome-ribosome supercomplex known as the translasome.
Asunto(s)
Proteínas de Peces/metabolismo , Ciclo Menstrual/fisiología , Ovario/metabolismo , Proteoma/metabolismo , Animales , Inteligencia Artificial , Lubina , Análisis por Conglomerados , Femenino , Proteínas de Peces/genética , Ontología de Genes , Espectrometría de Masas/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ribosomas/genética , Ribosomas/metabolismoRESUMEN
An aquaculture research facility experienced high mortality rates in white bass Morone chrysops associated with a monogenean infestation of the gills, but not in striped bass Morone saxatilis in the same facility. All mortalities had pale gills. Monogeneans, identified as Gamacallum macroura (MacCallum and MacCallum 1913) Unnithan 1971, were found on the gills. Pale-gilled and healthy white bass were selected with no particular attention to condition for venipuncture and euthanasia for postmortem examination, including parasite counts from gills. The median packed cell volume (PCV) of fish with gill pallor was 12.5% (range 9-37%) while PVC of fish with more normal color was 30% (27-33%). Association between the PCV and gill pallor score was statistically significant, as was the association between PCV and the number of monogeneans found on the gills of each fish. Median estimated white blood cell count of fish with gill pallor, at 12.05 × 10(3/)µL (range 3.8-24.7), was significantly lower than of apparently healthy fish: 24.7 × 10(3)/µL (17.3-31.5). Histopathology of the gill arches of pale-gilled fish revealed multifocal moderate to severe branchitis, focal areas of dilated hyperplastic lamellae occluded by fibrin, and monogeneans attached to the lamellae. Fish that were apparently healthy had grossly similar histologic lesions, but at lower frequency and severity.
Asunto(s)
Lubina , Enfermedades de los Peces/parasitología , Platelmintos/aislamiento & purificación , Infecciones por Trematodos/veterinaria , Animales , Enfermedades de los Peces/patología , Platelmintos/clasificación , Infecciones por Trematodos/parasitologíaRESUMEN
BACKGROUND: The striped bass and its relatives (genus Morone) are important fisheries and aquaculture species native to estuaries and rivers of the Atlantic coast and Gulf of Mexico in North America. To open avenues of gene expression research on reproduction and breeding of striped bass, we generated a collection of expressed sequence tags (ESTs) from a complementary DNA (cDNA) library representative of their ovarian transcriptome. RESULTS: Sequences of a total of 230,151 ESTs (51,259,448 bp) were acquired by Roche 454 pyrosequencing of cDNA pooled from ovarian tissues obtained at all stages of oocyte growth, at ovulation (eggs), and during preovulatory atresia. Quality filtering of ESTs allowed assembly of 11,208 high-quality contigs ≥ 100 bp, including 2,984 contigs 500 bp or longer (average length 895 bp). Blastx comparisons revealed 5,482 gene orthologues (E-value < 10-3), of which 4,120 (36.7% of total contigs) were annotated with Gene Ontology terms (E-value < 10-6). There were 5,726 remaining unknown unique sequences (51.1% of total contigs). All of the high-quality EST sequences are available in the National Center for Biotechnology Information (NCBI) Short Read Archive (GenBank: SRX007394). Informative contigs were considered to be abundant if they were assembled from groups of ESTs comprising ≥ 0.15% of the total short read sequences (≥ 345 reads/contig). Approximately 52.5% of these abundant contigs were predicted to have predominant ovary expression through digital differential display in silico comparisons to zebrafish (Danio rerio) UniGene orthologues. Over 1,300 Gene Ontology terms from Biological Process classes of Reproduction, Reproductive process, and Developmental process were assigned to this collection of annotated contigs. CONCLUSIONS: This first large reference sequence database available for the ecologically and economically important temperate basses (genus Morone) provides a foundation for gene expression studies in these species. The predicted predominance of ovary gene expression and assignment of directly relevant Gene Ontology classes suggests a powerful utility of this dataset for analysis of ovarian gene expression related to fundamental questions of oogenesis. Additionally, a high definition Agilent 60-mer oligo ovary 'UniClone' microarray with 8 × 15,000 probe format has been designed based on this striped bass transcriptome (eArray Group: Striper Group, Design ID: 029004).
Asunto(s)
Lubina/genética , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Oogénesis/genética , Ovario/metabolismo , Transcriptoma , Animales , ADN Complementario/química , ADN Complementario/genética , Bases de Datos Genéticas , Estuarios , Etiquetas de Secuencia Expresada , Femenino , Explotaciones Pesqueras , Perfilación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Oocitos/citología , Ovario/citología , Análisis de Secuencia de ADN , Pez Cebra/genéticaRESUMEN
The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetics technologies in striped bass breeding programs, we previously developed nearly 500 microsatellite markers. The objectives of this study were to construct a microsatellite linkage map of striped bass and to examine conserved synteny between striped bass and three-spined stickleback (Gasterosteus aculeatus). Of 480 microsatellite markers screened for polymorphism, 289 informative markers were identified and used to genotype two half-sib mapping families. Twenty-six linkage groups were assembled, and only two markers remain unlinked. The sex-averaged map spans 1,623.8 cM with an average marker density of 5.78 cM per marker. Among 287 striped bass microsatellite markers assigned to linkage groups, 169 (58.9%) showed homology to sequences on stickleback chromosomes or scaffolds. Comparison between the stickleback genome and the striped bass linkage map revealed conserved synteny between these two species. This is the first linkage map for any of the Morone species. This map will be useful for molecular mapping and marker-assisted selection of genes of interest in striped bass breeding programs. The conserved synteny between striped bass and stickleback will facilitate fine mapping of genome regions of interest and will serve as a new resource for comparative mapping with other Perciform fishes such as European sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and tilapia (Oreochromis ssp.).
Asunto(s)
Lubina/genética , Mapeo Cromosómico , Repeticiones de Microsatélite/genética , Smegmamorpha/genética , Sintenía/genética , Animales , Cruzamiento/métodos , Biología Computacional , Factores Sexuales , Especificidad de la EspecieRESUMEN
Three types of white perch (Morone americana) vitellogenin (VtgAa, VtgAb, and VtgC) were purified, labeled with digoxigenin (DIG), and subjected to Vtg receptor (Vtgr) binding assays in 96-well plates coated with perch ovarian membrane proteins or to ligand blotting procedures. Binding specificity was evaluated by incubating membrane protein preparations with constant amounts of DIG-Vtg tracer (VtgAa, VtgAb, VtgC, or a mixture of VtgAa and VtgAb [VtgAa/b]) alone or in the presence of unlabeled Vtg ligands. At 250-fold excess molar concentration relative to the tracer, VtgAa and VtgAb were each able to displace only approximately 50% of bound DIG-VtgAa/b, but VtgAa/b could fully displace DIG-VtgAa and DIG-VtgAb under the same conditions. Over a broad range of excess molar ratios, unlabeled VtgAa and VtgAb each displaced their respective DIG-Vtg tracer much more effectively than each did the heterologous tracer (DIG-VtgAb and DIG-VtgAa, respectively). Ligand blotting revealed three forms of Vtgr, a large receptor (>212 kDa) that bound only to VtgAa and two smaller receptors (â¼ 116 and â¼ 110.5 kDa) that bound preferentially to VtgAb. The VtgC did not specifically bind to ovarian membrane proteins in either assay. Collectively, these results indicate the presence of a system of multiple ovarian Vtgrs with disparate binding to the three types of Vtg present in higher-order teleosts (Acanthomorpha). To our knowledge, this is the first report on binding of multiple types of Vtg to multiple forms of Vtgr in any vertebrate.