Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Physiol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041487

RESUMEN

Insertions and deletions (indels) are the second most common type of variation in the human genome. However, limited data on their associations with exercise-related phenotypes have been documented. The aim of the present study was to examine the association between 18,370 indel variants and power athlete status, followed by additional studies in 357,246 individuals. In the discovery phase, the D allele of the MDM4 gene rs35493922 I/D polymorphism was over-represented in power athletes compared with control subjects (P = 7.8 × 10-9) and endurance athletes (P = 0.0012). These findings were replicated in independent cohorts, showing a higher D allele frequency in power athletes compared with control subjects (P = 0.016) and endurance athletes (P = 0.031). Furthermore, the D allele was positively associated (P = 0.0013) with greater fat-free mass in the UK Biobank. MDM4 encodes a protein that inhibits the activity of p53, which induces muscle fibre atrophy. Accordingly, we found that MDM4 expression was significantly higher in the vastus lateralis of power athletes compared with endurance athletes (P = 0.0009) and was positively correlated with the percentage of fast-twitch muscle fibres (P = 0.0062) and the relative area occupied by fast-twitch muscle fibres (P = 0.0086). The association between MDM4 gene expression and an increased proportion of fast-twitch muscle fibres was confirmed in two additional cohorts. Finally, we found that the MDM4 DD genotype was associated with increased MDM4 gene expression in vastus lateralis and greater cross-sectional area of fast-twitch muscle fibres. In conclusion, MDM4 is suggested to be a potential regulator of muscle fibre specification and size, with its indel variant being associated with power athlete status. HIGHLIGHTS: What is the central question of this study? Which indel variants are functional and associated with sport- and exercise-related traits? What is the main finding and its importance? Out of 18,370 tested indels, the MDM4 gene rs35493922 I/D polymorphism was found to be the functional variant (affecting gene expression) and the most significant, with the deletion allele showing associations with power athlete status, fat-free mass and cross-sectional area of fast-twitch muscle fibres. Furthermore, the expression of MDM4 was positively correlated with the percentage of fast-twitch muscle fibres and the relative area occupied by fast-twitch muscle fibres.

2.
Cells ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497168

RESUMEN

Muscle fiber composition is associated with physical performance, with endurance athletes having a high proportion of slow-twitch muscle fibers compared to power athletes. Approximately 45% of muscle fiber composition is heritable, however, single nucleotide polymorphisms (SNP) underlying inter-individual differences in muscle fiber types remain largely unknown. Based on three whole genome SNP datasets, we have shown that the rs236448 A allele located near the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene was associated with an increased proportion of slow-twitch muscle fibers in Russian (n = 151; p = 0.039), Finnish (n = 287; p = 0.03), and Japanese (n = 207; p = 0.008) cohorts (meta-analysis: p = 7.9 × 10−5. Furthermore, the frequency of the rs236448 A allele was significantly higher in Russian (p = 0.045) and Japanese (p = 0.038) elite endurance athletes compared to ethnically matched power athletes. On the contrary, the C allele was associated with a greater proportion of fast-twitch muscle fibers and a predisposition to power sports. CDKN1A participates in cell cycle regulation and is suppressed by the miR-208b, which has a prominent role in the activation of the slow myofiber gene program. Bioinformatic analysis revealed that the rs236448 C allele was associated with increased CDKN1A expression in whole blood (p = 8.5 × 10−15) and with greater appendicular lean mass (p = 1.2 × 10−5), whereas the A allele was associated with longer durations of exercise (p = 0.044) reported amongst the UK Biobank cohort. Furthermore, the expression of CDKN1A increased in response to strength (p < 0.0001) or sprint (p = 0.00035) training. Accordingly, we found that CDKN1A expression is significantly (p = 0.002) higher in the m. vastus lateralis of strength athletes compared to endurance athletes and is positively correlated with the percentage of fast-twitch muscle fibers (p = 0.018). In conclusion, our data suggest that the CDKN1A rs236448 SNP may be implicated in the determination of muscle fiber composition and may affect athletic performance.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Estudio de Asociación del Genoma Completo , Fibras Musculares Esqueléticas , Fibras Musculares de Contracción Lenta , Humanos , Atletas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares de Contracción Lenta/fisiología
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969862

RESUMEN

Nuclear noncoding RNAs (ncRNAs) are key regulators of gene expression and chromatin organization. The progress in studying nuclear ncRNAs depends on the ability to identify the genome-wide spectrum of contacts of ncRNAs with chromatin. To address this question, a panel of RNA-DNA proximity ligation techniques has been developed. However, neither of these techniques examines proteins involved in RNA-chromatin interactions. Here, we introduce RedChIP, a technique combining RNA-DNA proximity ligation and chromatin immunoprecipitation for identifying RNA-chromatin interactions mediated by a particular protein. Using antibodies against architectural protein CTCF and the EZH2 subunit of the Polycomb repressive complex 2, we identify a spectrum of cis- and trans-acting ncRNAs enriched at Polycomb- and CTCF-binding sites in human cells, which may be involved in Polycomb-mediated gene repression and CTCF-dependent chromatin looping. By providing a protein-centric view of RNA-DNA interactions, RedChIP represents an important tool for studies of nuclear ncRNAs.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas del Grupo Polycomb/metabolismo , ARN no Traducido/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Humanos
4.
BMC Genomics ; 17(Suppl 14): 1010, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28105943

RESUMEN

BACKGROUND: In recent years, the damage caused by bacterial pathogens to major crops has been increasing worldwide. Pseudomonas syringae is a widespread bacterial species that infects almost all major crops. Different P. syringae strains use a wide range of biochemical mechanisms, including phytotoxins and effectors of the type III and type IV secretion systems, which determine the specific nature of the pathogen virulence. RESULTS: Strains 1845 (isolated from dicots) and 2507 (isolated from monocots) were selected for sequencing because they specialize on different groups of plants. We compared virulence factors in these and other available genomes of phylogroup 2 to find genes responsible for the specialization of bacteria. We showed that strain 1845 belongs to the clonal group that has been infecting monocots in Russia and USA for a long time (at least 50 years). Strain 1845 has relatively recently changed its host plant to dicots. CONCLUSIONS: The results obtained by comparing the strain 1845 genome with the genomes of bacteria infecting monocots can help to identify the genes that define specific nature of the virulence of P. syringae strains.


Asunto(s)
Genoma Bacteriano , Genómica , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Sistemas de Secreción Bacterianos/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Biología Computacional/métodos , Elementos Transponibles de ADN , Genes Bacterianos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia , Pseudomonas syringae/clasificación , Pseudomonas syringae/patogenicidad , Percepción de Quorum/genética , Virulencia/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...