Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 145(6)2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555813

RESUMEN

Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Mesodermo/citología , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Células Madre Pluripotentes/citología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Inmunofenotipificación , Hibridación in Situ , Técnicas In Vitro , Mesodermo/metabolismo , Mesodermo/fisiología , Ratones , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Matrices Tisulares , Vía de Señalización Wnt/genética
2.
Cell Rep ; 21(12): 3483-3497, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262328

RESUMEN

MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , ARN Polimerasa II/metabolismo , Fase S , Proteínas de Ciclo Celular , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Intergénico/metabolismo , Proteínas de Unión al ADN , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/genética , Elongación de la Transcripción Genética , Factores de Transcripción TFIII/metabolismo
3.
Nat Genet ; 48(4): 398-406, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950094

RESUMEN

Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 × 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis.


Asunto(s)
Carcinoma Basocelular/genética , Transducción de Señal/efectos de la radiación , Neoplasias Cutáneas/genética , Anilidas/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Carcinoma Basocelular/tratamiento farmacológico , Carcinoma Basocelular/patología , Análisis Mutacional de ADN , Progresión de la Enfermedad , Exoma , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Mutación , Piridinas/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Transcriptoma
4.
Nat Biotechnol ; 33(9): 962-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237517

RESUMEN

During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.


Asunto(s)
Diferenciación Celular , Modelos Animales de Enfermedad , Fibras Musculares Esqueléticas/patología , Distrofia Muscular de Duchenne/patología , Células Madre Pluripotentes/patología , Animales , Células Cultivadas , Ratones , Ratones Transgénicos
5.
Cell Metab ; 16(5): 588-600, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23085101

RESUMEN

Energy release from cellular storage is mandatory for survival during fasting. This is achieved through lipolysis and liver gluconeogenesis. We show here that in the mouse, gut-derived serotonin (GDS) is upregulated during fasting and that it favors both mechanisms. In adipocytes, GDS signals through the Htr2b receptor to favor lipolysis by increasing phosphorylation and activity of hormone-sensitive lipase. In hepatocytes, GDS signaling through Htr2b promotes gluconeogenesis by enhancing activity of two rate-limiting gluconeogenic enzymes, FBPase and G6Pase. In addition, GDS signaling in hepatocytes prevents glucose uptake in a Glut2-dependent manner, thereby further favoring maintenance of blood glucose levels. As a result, inhibition of GDS synthesis can improve glucose intolerance caused by high-fat diet. Hence, GDS opposes deleterious consequences of food deprivation by favoring lipolysis and liver gluconeogenesis while preventing glucose uptake by hepatocytes. As a result, pharmacological inhibition of its synthesis may contribute to improve type 2 diabetes.


Asunto(s)
Adaptación Fisiológica/fisiología , Ayuno , Tracto Gastrointestinal/metabolismo , Serotonina/metabolismo , Adipocitos/metabolismo , Animales , Dieta Alta en Grasa , Gluconeogénesis , Glucosa/metabolismo , Intolerancia a la Glucosa , Transportador de Glucosa de Tipo 2/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/enzimología , Hepatocitos/metabolismo , Lipasa/metabolismo , Lipólisis , Ratones , Fosforilación , Receptores de Serotonina 5-HT2/metabolismo , Serotonina/química , Regulación hacia Arriba
6.
Cell ; 144(5): 796-809, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21333348

RESUMEN

Interactions between bone and the reproductive system have until now been thought to be limited to the regulation of bone remodeling by the gonads. We now show that, in males, bone acts as a regulator of fertility. Using coculture assays, we demonstrate that osteoblasts are able to induce testosterone production by the testes, though they fail to influence estrogen production by the ovaries. Analyses of cell-specific loss- and gain-of-function models reveal that the osteoblast-derived hormone osteocalcin performs this endocrine function. By binding to a G protein-coupled receptor expressed in the Leydig cells of the testes, osteocalcin regulates in a CREB-dependent manner the expression of enzymes that is required for testosterone synthesis, promoting germ cell survival. This study expands the physiological repertoire of osteocalcin and provides the first evidence that the skeleton is an endocrine regulator of reproduction.


Asunto(s)
Huesos/fisiología , Fertilidad , Osteocalcina/fisiología , Animales , Células Cultivadas , Humanos , Células Intersticiales del Testículo/fisiología , Masculino , Ratones , Osteoblastos/fisiología , Testículo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...