Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicon ; : 108102, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277110

RESUMEN

BACKGROUND: Infertility has been observed as one of the major issues in humans, one known risk factor is heavy metals. METHODS: The main focus of the present research is to assess the toxic effect of hexavalent chromium (Cr (VI)) on sperm and its mitigation by Nigella sativa seed extract (NS) and its conjugated silver nanoparticles (NS +NP). In the present study, we administered 1.5 mg/kg body of Cr (VI) orally in mice for 60 days to induce toxicity in testes and effect on sperm production and motility in male mice. NS and NS + NP (50 mg/kg body weight) were administered to evaluate protective action against Cr (VI). The sperm were analyzed by computer-assisted semen analysis (CASA) and chromium concentration in testicular tissue was measured via the atomic absorption spectrophotometer. RESULTS: The CASA analysis showed that Cr (VI) was directly linked with a decline in sperm concentration, motility, distance, velocity, straightness, and head beat frequency attributes. However, the administration of Nigella sativa seed extract (NS) and its green synthesized silver nanoparticles (NS + NP) improved sperm concentration, motility, distance, velocity, straightness, and head beat frequency. The chromium content in the testes of Cr-exposed animals significantly increased, which negatively affected sperm parameters. However, Nigella sativa and Nigella sativa conjugated silver nanoparticles helped in the removal of Cr content from testes hence improving the sperm parameters in exposed mice. CONCLUSION: The decrease in Cr concentration improved sperm quality and quantity, improving male fertility.

2.
Drug Dev Ind Pharm ; 50(7): 577-592, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39087808

RESUMEN

OBJECTIVE: The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE: Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS: Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS: This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.


Asunto(s)
Sericinas , Cicatrización de Heridas , Sericinas/química , Sericinas/farmacología , Sericinas/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Humanos , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Seda/química , Nanopartículas/química
3.
Mol Biol Rep ; 51(1): 904, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133413

RESUMEN

Cardiovascular disease (CVD) is a common cardiac disorder that leads to heart attacks, strokes, and heart failure. It is primarily characterized by conditions that impact the heart and blood arteries, including peripheral artery disease, arrhythmias, atherosclerosis, myocardial ischemia, congenital heart abnormalities, heart failure, rheumatic heart disease, hypertension, and cardiomyopathies. These conditions are mainly effect the heart and blood vessels, causing blockages or weakened pumping, due to severe hereditary and environmental factors. The frequency of CVD is rising significantly as life expectancy increases. Despite this, no effective treatment or management for its symptoms has been found. One of the most difficult obstacles to overcome, is finding a suitable animal model for drug screening and drug development. Although rodents, mice, swine, and mammals serve as the basis for most animal models of cardiovascular disease, no model accurately captures the epidemiology of the condition. Zebrafish (Danio rerio) have drawn the interest of the international scientific community due to certain shortcomings of the previously discussed animal models because they are smaller, less costly, and have an incredibly high rate of reproduction. This review article emphasizes the significance of using zebrafish as an animal model to investigate the possible facets of cardiovascular disease. Moreover, the ultimate purpose of this review article is to establish the advantages of employing zebrafish over other animal models and to investigate the boundaries of using zebrafish to study human disease. Furthermore, the mechanisms of cardiovascular diseases induction in zebrafish were covered to improve understanding for readers. Finally, the analysis of cardiotoxicity using Zebra fish model, is also explained. In order to stop the health index from deteriorating, the current study also covers some innovative, effective, and relatively safer treatments for treatment and management of cardiotoxicity.


Asunto(s)
Enfermedades Cardiovasculares , Modelos Animales de Enfermedad , Pez Cebra , Animales , Enfermedades Cardiovasculares/genética , Humanos
4.
J Mol Histol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120834

RESUMEN

Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.

5.
Inflammopharmacology ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138746

RESUMEN

BACKGROUND: Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE: Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY: To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.

6.
Microsc Res Tech ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152992

RESUMEN

Diabetes mellitus causes impaired diabetic wounds which is linked to a number of pathological alterations that impede the healing of wounds. In the current research, Swiss albino mice were given alloxan monohydrate to induce diabetes and excision wounds of approximately 6 mm using biopsy punch. The diabetic wounds were treated with various biomaterials including Vachellia nilotica extract (VN), Nigella sativa extract (NS), V. nilotica nanoparticles (VNNPs) and N. sativa nanoparticles (NSNPs). Their effects were determined by evaluating the percent wound contraction, healing time, and histopathological analysis. The serum level of various biochemical parameters that is, pro-inflammatory cytokines,  Matrix metalloproteinases (MMPs) and tissue inhibitor matrix metalloproteinases (TIMPs) were also determined. VNNPs group provided the best outcomes, with wound contraction 100% on 12th day. According to histopathological examination, VNNPs group reduced inflammation and encouraged the formation of blood vessels, fibroblasts, and keratinocytes. VNNPs group significantly alleviated the serum level of pro-inflammatory cytokines that are, TNF-α (19.4 ± 1.5 pg/mL), IL-6 (13.8 ± 0.6 pg/mL), and IL-8 (24.8 ± 1.2 pg/mL) as compared with the diabetic mice. The serum level of MMP2 (248.2 ± 7.9 pg/mL), MMP7 (316 ± 5.2 pg/mL), and MMP9 (167.8 ± 12.1 pg/mL) in the same group VNNPs were also observed much less than the diabetic mice. The serum level of TIMPs (176.8 ± 2.9 pg/mL) in the VNNPs group was increased maximally with respect to diabetic mice. It is concluded that nanoparticles and biomaterials possess healing properties and have the ability to repair the chronic/diabetic wound. RESEARCH HIGHLIGHTS: UV-spectrophotometric and Fourier transform infrared spectroscopy observation for functional group analysis and possible linkage between conjugates Optimization of the histopathological and biochemical markers after application of the formulations Microscopic analysis of epithelial tissues for evaluation of healing mechanisms Speedy contraction of wounds as the alleviation of the inflammatory and necrotic factors.

7.
Chemosphere ; 363: 142826, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002651

RESUMEN

Numerous nano-dimensioned materials have been generated as a result of several advancements in nanoscale science such as metallic nanoparticles (mNPs) which have aided in the advancement of related research. As a result, several significant nanoscale materials are being produced commercially. It is expected that in the future, products that are nanoscale, like mNPs, will be useful in daily life. Despite certain benefits, widespread use of metallic nanoparticles and nanotechnology has negative effects and puts human health at risk because of their continual accumulation in closed biological systems, along with their complex and diverse migratory and transformation pathways. Once within the human body, nanoparticles (NPs) disrupt the body's natural biological processes and trigger inflammatory responses. These NPs can also affect the immune system by activating separate pathways that either function independently or interact with one another. Cytotoxic effects, inflammatory response, genetic material damage, and mitochondrial dysfunction are among the consequences of mNPs. Oxidative stress and reactive oxygen species (ROS) generation caused by mNPs depend upon a multitude of factors that allow NPs to get inside cells and interact with biological macromolecules and cell organelles. This review focuses on how mNPs cause inflammation and oxidative stress, as well as disrupt cellular signaling pathways that support these effects. In addition, possibilities and problems to be reduced are addressed to improve future research on the creation of safer and more environmentally friendly metal-based nanoparticles for commercial acceptance and sustainable use in medicine and drug delivery.


Asunto(s)
Inflamación , Nanopartículas del Metal , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Nanopartículas/toxicidad , Nanopartículas/química , Transducción de Señal/efectos de los fármacos
8.
Biol Trace Elem Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985237

RESUMEN

Nanotechnology has become a major topic of study, particularly in the medical and health domains. Because nanomedicine has a higher recovery rate than other conventional drugs, it has attracted more attention. Green synthesis is the most efficient and sustainable method of creating nanoparticles. The current work used ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction to thoroughly characterize the synthesized silver nanoparticles (AgNPs) from Azadirachta indica leaf extract. Characterization confirmed the synthesis of the AgNPs along with the possible linkage of the phytochemicals with the silver as well as the quantitative analysis and nature of NPs. The antioxidant activity of AgNPs and neem extract was measured by the 2,2-diphenyl-1-picrylhydrazyl assay using various concentrations (20, 40, 60, 80, and 100 µg/ml). Additionally, using diabetic mice that had been given alloxan, the in vivo antidiabetic potential of biosynthesized AgNPs was assessed. Eight groups of mice were used to assess the antidiabetic activity: one control group and seven experimental groups (untreated, extract-treated, AgNPs at low and high doses, standard drug, low dose of AgNPs + drug, and high dose of AgNPs + drug). At days 0, 7, 14, 21, and 28, blood glucose levels and body weight were measured. After 28 days, the mice were dissected, and the liver, kidney, and pancreas were examined histologically. The results depicted that the AgNPs showed higher (significant) radical scavenging activity (IC50 = 35.2 µg/ml) than extract (IC50 = 93.0 µg/ml) and ascorbic acid (IC50 = 64.6 µg/ml). The outcomes demonstrated that biosynthesized AgNPs had a great deal of promise as an antidiabetic agent and exhibited remarkable effects in diabetic mice given AgNPs, extract, and drug. Remarkable improvement in the body weight and blood glucose level of mice treated with high doses of AgNPs and drug was observed. The body weight and blood glucose level of diabetic mice treated with a high dose of AgNPs + standard drug showed significant improvement, going from 28.7 ± 0.2 to 35.6 ± 0.3 g and 248 ± 0.3 to 109 ± 0.1 mg/dl, respectively. Significant regeneration was also observed in the histomorphology of the kidney, liver's central vein, and islets of Langerhans after treatment with biosynthesized AgNPs. Diabetic mice given a high dose of AgNPs and drug displayed architecture of the kidney, liver, and pancreas that was nearly identical to that of the control group. According to the current research, biosynthesized AgNPs have strong antioxidant and antidiabetic potential and may eventually provide a less expensive option for the treatment of diabetes.

9.
J Oncol Pharm Pract ; : 10781552241265058, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056234

RESUMEN

OBJECTIVE: Dostarlimab, a humanized monoclonal PD-1 blocking antibody, is being tested as a cancer therapy in this review. Specifically, it addresses mismatch repair failure in endometrial cancer and locally progressed rectal cancer patients. DATA SOURCES: A thorough database search found Dostarlimab clinical trials and studies. Published publications and ongoing clinical trials on Dostarlimab's efficacy as a single therapy and in conjunction with other medicines across cancer types were searched. DATA SUMMARY: The review recommends Dostarlimab for endometrial cancer mismatch repair failure, as supported by GARNET studies. The analysis also highlights locally advanced rectal cancer findings. In the evolving area of cancer therapy, immune checkpoint inhibitors including pembrolizumab, avelumab, atezolizumab, nivolumab, and durvalumab were discussed. CONCLUSIONS: Locally advanced rectal cancer patients responded 100% to Dostarlimab. Many clinical trials, including ROSCAN, AMBER, IOLite, CITRINO, JASPER, OPAL, PRIME, PERLA, and others, are investigating Dostarlimab in combination treatment. This research sheds light on Dostarlimab's current and future possibilities, in improving cancer immunotherapy understanding.

10.
Microsc Res Tech ; 87(9): 2121-2133, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38706225

RESUMEN

The present study incorporated an environment-friendly and cost-efficient green synthesis method for fabricating zinc oxide nanoparticles (ZnO-NPs) using various parts (leaves, buds, and flowers) of Bauhinia Variegate Linn. UV-Spectrophotometric analysis was used to confirm the synthesis of ZnO-NPs, which showed an absorption band within 360-380 nm range. Further techniques like FT-IR spectroscopy and (SEM) scanning electron microscopy equipped with a novel EDX were also included to confirm the synthesis, size, and shape of ZnO-NPs. Results obtained by FT-IR showed that the phytochemicals present in the ethanolic extract successfully acted as a capping agent. SEM micrographs confirmed irregularly shaped nanoparticles with an average size of 70-80 nm. The presence of Zinc and Oxygen peaks in EDX also confirmed the successful synthesis of ZnO nanoparticles. The radical scavenging (antioxidant) potential of prepared nanoparticles was also evaluated by DPPH radical assay. The ZnO-NPs obtained from the ethanolic extract of buds showed the highest %RSA (86%) as compared to the flowers (79%) and leaves (76%). The current study findings showed the versatile morphology of all parts of the plant with significant antioxidant potential, establishing the use of Bauhinia Variegate in biological systems for various biomedical applications. RESEARCH HIGHLIGHTS: A thorough comparative analysis of the radical scavenging power of major parts of the Bauhinia Variegate, which is 1st of its kind. Extensive characterization using UV-Vis spectrophotometry, FT-IR, SEM, and EDX to observe the conformational and morphological changes. Analysis of the reduction potential of leaves, buds, and flowers of a single plant for future directions in green synthesis.


Asunto(s)
Bauhinia , Flores , Depuradores de Radicales Libres , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Bauhinia/química , Óxido de Zinc/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Flores/química , Depuradores de Radicales Libres/química , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo , Nanopartículas del Metal/química , Antioxidantes/farmacología , Antioxidantes/química , Espectrofotometría
11.
Mol Biol Rep ; 51(1): 448, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536526

RESUMEN

Arthritis is a common illness that affects joints and it may result in inflammation and pain. Even though arthritis usually affects older people, it can also affect children, adults, and both genders. Numerous arthritic mouse models have been developed but the CIA model of rheumatoid arthritis (RA) has received the most attention. With the use of steroids, DMARDs, and NSAIDs, therapy objectives such as reduced disease incidence and better pain management are achieved. Long-term usage of these therapeutic approaches may have negative side effects. Herbal medications are the source of several medicinal substances. Studies have explored the potential benefits of medicinal plants in treating RA. These benefits include up-regulating antioxidant potential, inhibiting cartilage degradation, down-regulating inflammatory cytokines such as NF-kB, IL-6, and TNF-α, and suppressing oxidative stress. In this review, we systematically discuss the role of traditional medicinal plants in rheumatoid arthritis (RA) disease treatment. The role of different medicinal plants such as Curcuma longa, Syzygium aromaticum, Zingiber officinale and Withania somnifera, against arthritis is discussed in this review.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Plantas Medicinales , Ratones , Animales , Niño , Humanos , Femenino , Masculino , Anciano , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Plantas Medicinales/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Artritis Experimental/tratamiento farmacológico
12.
Arch Microbiol ; 206(4): 145, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461447

RESUMEN

According to recent research, bacterial imbalance in the gut microbiota and breast tissue may be linked to breast cancer. It has been discovered that alterations in the makeup and function of different types of bacteria found in the breast and gut may contribute to growth and advancement of breast cancer in several ways. The main role of gut microbiota is to control the metabolism of steroid hormones, such as estrogen, which are important in raising the risk of breast cancer, especially in women going through menopause. On the other hand, because the microbiota can influence mucosal and systemic immune responses, they are linked to the mutual interactions between cancer cells and their local environment in the breast and the gut. In this regard, the current review thoroughly explains the mode of action of probiotics and microbiota to eradicate the malignancy. Furthermore, immunomodulation by microbiota and probiotics is described with pathways of their activity.


Asunto(s)
Neoplasias de la Mama , Microbiota , Probióticos , Femenino , Humanos , Prebióticos , Neoplasias de la Mama/prevención & control , Sistema Inmunológico , Inflamación , Hormonas
13.
Folia Microbiol (Praha) ; 69(3): 549-565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38532057

RESUMEN

Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.


Asunto(s)
Bacterias , Probióticos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Humanos , Bacterias/efectos de los fármacos , Animales , Metabolismo Secundario , Inmunomodulación , Factores Inmunológicos/uso terapéutico , Enfermedades Gastrointestinales/terapia , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/microbiología , Manejo de la Enfermedad , Microbioma Gastrointestinal
14.
Microsc Res Tech ; 87(6): 1286-1305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351883

RESUMEN

Diabetes is a life-threatening disease that affects different parts of the body including the liver, kidney, and pancreas. The core root of diabetes is mainly linked to oxidative stress produced by reactive oxygen species (ROS). Berberis lyceum Royle (BLR) is the source of natural products. It comprises numerous bioactive compounds having antioxidant activities. In the current investigation, silver nanoparticles from BLR root extract were synthesized, characterized, and assessed for antidiabetic potential. UV spectrophotometry, Transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR), and x-ray diffraction (XRD) were applied for the characterization of NPs. It was evident from the morphological studies that the synthesized NPs were spherical and the average size was 11.02 nm. Results revealed that BLR-AgNPs showed higher radical scavenging activity as compared to BLR extract. Moreover, BLR-AgNPs displayed superior in vivo and in vitro antidiabetic activity in comparison to BLR extract. Glucose level (116.5 ± 5.1 mg/dL), liver function test (ALAT: 54.038 ± 6.2 IU/L; ASAT: 104.42 ± 13.9 IU/L; ALP: 192.6 ± 2.4 IU/L; bilirubin: 1.434 ± 0.14 mg/dL; total protein: 5.14 ± 0.24 mg/dL), renal function test (urea: 39.6 ± 0.63 mg/dL; uric acid: 21.4 ± 0.94 mg/dL; creatinine: 0.798 ± 0.03 mg/dL; albumin: 4.14 ± 0.2 mg/dL), lipid profile level (cholesterol: 101.62 ± 3 mg/dL; triglyceride: 110.42 ± 7 mg/dL; HDL-C: 29.7 ± 3 mg/dL; LDL-C: 47.056 ± 1 mg/dL; VLDL-C: 22.0 ± 1.3 mg/dL) and hematology (WBCs: 3.82 ± 0.24 103 /µL; RBCs: 4.78 ± 0.42 106 /µL; Hb: 12.6 ± 1.0 g/dL; Hematocrit: 39.4 ± 3.7%; MCV: 65.8 ± 3 fL; platelets: 312 ± 22.4; neutrophils: 34.8 ± 1.87; eosinophils: 3.08 ± 0.43; monocytes: 3.08 ± 0.28; lymphocytes: 75.6 ± 3.77) confirmed the significant antidiabetic potential of BLR-AgNPs. Histopathological examination authenticated that BLR-AgNPs caused a significant revival in the morphology of the liver, kidney, and pancreas. Hence, findings of the study suggested the BLR-AgNPs as a potent antidiabetic agent and could be an appropriate nanomedicine to prevent diabetes in future. RESEARCH HIGHLIGHTS: Berberis lyceum extract as a reducing, capping, and stabilization agent for the BLR-AgNPs synthesis Evaluation of α-amylase inhibition, antioxidant, and α-glucosidase inhibition potential Thorough characterization using Fourier transform infrared spectroscopy, Transmission electron microscopy, x-ray diffraction, and UV-VIS spectrophotometer, which is 1st of its kind In-vivo antidiabetic activity evaluation through multiple biomarkers.


Asunto(s)
Berberis , Diabetes Mellitus , Nanopartículas del Metal , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Plata/farmacología , Difracción de Rayos X , Antioxidantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Extractos Vegetales/química , Microscopía Electrónica de Transmisión , Antibacterianos/farmacología
15.
J Infect Chemother ; 30(9): 838-846, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38423298

RESUMEN

INTRODUCTION: The current study aimed to investigate the role of probiotic Lactobacillus reuteri for the treatment and prevention of breast cancer. MATERIALS AND METHODS: Breast cancer was induced by using Cadmium Chloride (Cd) (2 mg/kg) in group II. Tamoxifen was administered to group III. Group IV was treated with Lactobacillus reuteri. Group V was treated with Cd for one month and divided into three subgroups including VA, VB, and VC which were treated with tamoxifen, Lactobacillus reuteri, and tamoxifen + Lactobacillus reuteri, respectively. RESULTS: Significantly higher levels of TNF-α (40.9 ± 4.2 pg/mL), IL-6 (28.0 ± 1.5 pg/mL), IL-10 (60.2 ± 2.0 pg/mL), IFN-γ (60.2 ± 2.0 pg/mL), ALAT (167.2 ± 6.2 U/l), ASAT (451.6 ± 13.9 U/l), and MDA (553.8 ± 19.6 U/l) was observed in Cd group. In comparison, significantly lower levels of TNF-α (18.0 ± 1.1 pg/mL), IL-6 (9.4 ± 0.4 pg/mL), IL-10 (20.8 ± 1.1 pg/mL), IFN-γ (20.8 ± 1.1 pg/mL), ALAT (85.2 ± 3.6 U/l), ASAT (185 ± 6.9 U/l), and MDA (246.0 ± 7.5 U/l) were observed in group Cd + Tam + LR. Liver histopathology of the Cd group showed hemorrhage and ductal aberrations. However, mild inflammation and healthier branched ducts were observed in treatment groups. Furthermore, the renal control group showed normal glomerular tufts, chronic inflammation from the Cd group, and relatively healthier glomerulus with mild inflammation in treatment groups. CONCLUSION: Hence, the preventive and anticancerous role of probiotic Lactobacillus reuteri is endorsed by the findings of the current study.


Asunto(s)
Cloruro de Cadmio , Limosilactobacillus reuteri , Probióticos , Animales , Femenino , Probióticos/uso terapéutico , Probióticos/farmacología , Probióticos/administración & dosificación , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/prevención & control , Neoplasias Mamarias Experimentales/inducido químicamente
16.
Sci Prog ; 107(1): 368504231221670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232951

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) such as 7, 12-dimethylbenzneanthracene (DMBA), due to long-term bioaccumulation cause serious physiological processes and behavioral dysfunctions such as cancer, ageing, and hypertension. Silk sericin (SS) is instrumental in cancer applications due to presence of flavonoids and carotenoids which are natural pigments, present in the layer of sericin that has antioxidant and antityrosinase activity. It reduces oxidative stress and suppresses cancer cytokines while interacting with reactive oxygen species (ROS) to stand against lipid peroxidation. Recent research was focused to calculate the pharmacological intervention of sericin-conjugated silver nanoparticles (S-AgNO3 NPs) against DMBA-induced toxicity. For this purpose, SS protein was extracted from silkworm cocoons by degumming process and the prepared S-AgNO3 NPs via a green synthesis. In female albino mice, a total of 50 mg/kg oral administration of DMBA was used for the induction of toxicity which required almost 8 to 10 weeks approximately. After 60 days of experimentation, mice were dissected, blood samples were collected for further hematological and biochemical analysis and were euthanized via cervical dislocation. There was a significant rise in the level of red blood cells, platelets, lymphocytes, and hemoglobin at the highest applied concentration of sericin and its nanoparticles. Similarly, a reasonable decline was observed in the level of white blood cells, neutrophils, eosinophils, and monocytes as compared to the cancer-inducing group. The level of glutathione, lactate dehydrogenase, and alkaline phosphatase as well as immunoglobulins such as immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) were significantly reduced in all treatment groups as compared to the DMBA-induced group. Substantial effects were demonstrated in response to S-AgNO3 NPs II (T) at the highest concentrations (200 mg/kg, BW) as follows: glutathione (2.42 ± 0.26 µmol/L), lactate dehydrogenase (493.6 ± 5.78 U/L), alkaline phosphatase (158.4 ± 6.35 U/L), IgA (4.22 ± 0.19 g/L), IgG (70 ± 1.70 g/L), and IgM (4.76 ± 0.12). The histopathological study of the liver, kidneys, and brain revealed that the DMBA-induced group showed cytotoxic effects against all selected organs of mice that were recovered by treatment of selective compounds but highly effective recovery was seen in S-AgNO3 NPs II (T). These results concluded that silk S-AgNO3 NPs showed significant pharmacological potential against cancer-inducing toxicity.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Sericinas , Femenino , Ratones , Animales , Sericinas/uso terapéutico , Sericinas/toxicidad , Plata/toxicidad , Ratones Endogámicos BALB C , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/toxicidad , Fosfatasa Alcalina , Seda/química , Glutatión/metabolismo , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Lactato Deshidrogenasas
17.
Microsc Res Tech ; 87(3): 616-627, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38031715

RESUMEN

Recent developments in the green synthesis of metallic nanoparticles (NPs) using phytoconstituents have attracted the attention of the global scientific community. The present study was designed to synthesize silver NPs (AgNPs) using Punica granatum and Plectranthus rugosus plant extracts. The fabricated AgNPs were characterized using UV-visible spectrophotometry (UV-Vis), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS). The shift in the color of the silver nitrate (AgNO3 ) solution after the addition of P. granatum and P. rugosus extracts indicated the synthesis of AgNPs. The effect of AgNO3 concentrations and pH on the synthesis of AgNPs was also evaluated. The findings of this study suggest that AgNO3 concentration of 1 mM, reaction time of 1 h, and pH of 7 at room temperature were the best suited conditions for the synthesis of AgNPs. According to the FTIR analysis, amidic and carbonyl compounds were primarily responsible for the encapsulation of AgNPs. SEM investigations have shown irregularly shaped geometry with sizes of 35 nm (P. granatum) and 33 nm (P. rugosus) with low agglomeration. The prepared AgNPs exhibited good potential for 2,2-diphenyl-1-picrylhydrazyl radical scavenging, with values of 70% (P. granatum) and 68% (P. rugosus). Hence, we conclude that the leaves of P. granatum and P. rugosus are excellent material for designing of different plant-extracted-conjugated AgNPs for biomedical applications. RESEARCH HIGHLIGHTS: Preparation of the AgNPs using novel plants extracts. P. granatum and P. rugosus extract as reducing, capping, stabilizing, and optimizing agents. Thorough comparative characterization using UV-Vis spectrophotometer, FTIR, SEM, and EDS which is a first of its kind. Comparative antioxidant activity.


Asunto(s)
Nanopartículas del Metal , Plectranthus , Granada (Fruta) , Microscopía Electrónica de Rastreo , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Plata , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/química
18.
J Fluoresc ; 34(2): 655-666, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37338726

RESUMEN

Morphology (size, shape) and structural variations (bonding pattern, crystallography, and atomic arrangements) have significant impacts on the efficacy of the metallic nanoparticles. Fabrication of these metal nanoparticles through green synthesis using plant extracts has increased attention due to their low cost, less hazardous byproducts, and multiple applications. In present study, Eucalyptus globulus extract was used to synthesize silver nanoparticles (AgNPs). Change of color from light brown to reddish brown and UV-visible spectral peak at 423 nm confirmed the formation of AgNPs. The shifting of FTIR spectra peaks indicated the potential role of the functional groups in extract as capping agents. The DLS evaluated the average size and stability of the nanoparticles while the surface morphology, size and the elemental composition of the AgNPs was established by the FESEM and EDX analysis. The SEM images revealed spherical nanoparticles of size ranging from 40-60 nm. Biogenic AgNPs showed better DPPH radical scavenging activity with IC50 (13.44 ± 0.3) as compared to leaves extract with IC50 (10.57 ± 0.2). The synthesized AgNPs showed higher zones of inhibition (ZOI) by well diffusion method against Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. Results of present study highlights the potential benefits of Eucalyptus globulus leaves extract-based AgNPs for various biomedical uses.


Asunto(s)
Eucalyptus , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Nanopartículas del Metal/química , Temperatura , Extractos Vegetales/farmacología , Extractos Vegetales/química , Escherichia coli , Concentración de Iones de Hidrógeno
19.
J Fluoresc ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672182

RESUMEN

Current study was aimed to determine the antibacterial, antioxidant and cytotoxic potential of Titanium dioxide nanoparticles (TiO2NPs) and Zinc oxide nanoparticles (ZnONPs). Nanoparticles were characterized by UV-Vis spectrophotometry, particle size analyzer (PSA), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The Minimum inhibitory concentration (MIC) was determined by standard agar dilution method. Antibacterial potential of nanoparticles was analyzed by standard disc diffusion method against bacterial strains including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. Different concentrations of NPs (0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 mg/mL) were incorporated to evaluate the antimicrobial activity. Antioxidant activity and cytotoxicity of these NPs was analyzed by DPPH method and brine shrimp cytotoxicity assay, respectively. The MIC of TiO2NPs against E. coli, P. aeruginosa and K. pneumoniae was 0.04, 0.08 and 0.07 mg/mL respectively while the MIC of ZnONPs against the above strains was 0.01, 0.015 and 0.01 mg/mL. The maximum zone of inhibition was observed for K. pneumoniae i.e., 20mm and 25mm against TiO2 and ZnO NPs respectively, at 1.4 mg/mL concentration of NPs. The susceptibility of NPs against bacterial strains was evaluated in the following order: K. pneumoniae > P. aeruginosa > E. coli. The antioxidant activity of nanoparticles increased by increasing the concentration of NPs while cytotoxic analysis exhibited non-toxic effect of ZnO NPs while TiO2 had toxic effects on 1.2 and 1.4 mg/mL concentrations. Results revealed that ZnO NPs have more antibacterial and negligible cytotoxic potential in contrast to TiO2 NPs.

20.
Microorganisms ; 11(9)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37764007

RESUMEN

Overuse of pesticides in agricultural soil and dye-polluted effluents severely contaminates the environment and is toxic to animals and humans making their removal from the environment essential. The present study aimed to assess the biodegradation of pesticides (cypermethrin (CYP) and imidacloprid (IMI)), and dyes (malachite green (MG) and Congo red (CR)) using biofilms of bacteria isolated from pesticide-contaminated soil and dye effluents. Biofilms of indigenous bacteria, i.e., Bacillus thuringiensis 2A (OP554568), Enterobacter hormaechei 4A (OP723332), Bacillus sp. 5A (OP586601), and Bacillus cereus 6B (OP586602) individually and in mixed culture were tested against CYP and IMI. Biofilms of indigenous bacteria i.e., Lysinibacillus sphaericus AF1 (OP589134), Bacillus sp. CF3 (OP589135) and Bacillus sp. DF4 (OP589136) individually and in mixed culture were tested for their ability to degrade dyes. The biofilm of a mixed culture of B. thuringiensis + Bacillus sp. (P7) showed 46.2% degradation of CYP compared to the biofilm of a mixed culture of B. thuringiensis + E. hormaechei + Bacillus sp. + B. cereus (P11), which showed significantly high degradation (70.0%) of IMI. Regarding dye biodegradation, a mixed culture biofilm of Bacillus sp. + Bacillus sp. (D6) showed 86.76% degradation of MG, which was significantly high compared to a mixed culture biofilm of L. sphaericus + Bacillus sp. (D4) that degraded only 30.78% of CR. UV-VIS spectroscopy revealed major peaks at 224 nm, 263 nm, 581 nm and 436 nm for CYP, IMI, MG and CR, respectively, which completely disappeared after treatment with bacterial biofilms. Fourier transform infrared (FTIR) analysis showed the appearance of new peaks in degraded metabolites and disappearance of a peak in the control spectrum after biofilm treatment. Thin layer chromatography (TLC) analysis also confirmed the degradation of CYP, IMI, MG and CR into several metabolites compared to the control. The present study demonstrates the biodegradation potential of biofilm-forming bacteria isolated from pesticide-polluted soil and dye effluents against pesticides and dyes. This is the first report demonstrating biofilm-mediated bio-degradation of CYP, IMI, MG and CR utilizing soil and effluent bacterial flora from Multan and Sheikhupura, Punjab, Pakistan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...