Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(15): 3564-3581.e6, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059394

RESUMEN

Hermansky-Pudlak syndrome (HPS) is an inherited disorder of intracellular vesicle trafficking affecting the function of lysosome-related organelles (LROs). At least 11 genes underlie the disease, encoding four protein complexes, of which biogenesis of lysosome-related organelles complex-2 (BLOC-2) is the last whose molecular action is unknown. We find that the unicellular eukaryote Dictyostelium unexpectedly contains a complete BLOC-2, comprising orthologs of the mammalian subunits HPS3, -5, and -6, and a fourth subunit, an ortholog of the Drosophila LRO-biogenesis gene, Claret. Lysosomes from Dictyostelium BLOC-2 mutants fail to mature, similar to LROs from HPS patients, but for all endolysosomes rather than a specialized subset. They also strongly resemble lysosomes from WASH mutants. Dictyostelium BLOC-2 localizes to the same compartments as WASH, and in BLOC-2 mutants, WASH is inefficiently recruited, accounting for their impaired lysosomal maturation. BLOC-2 is recruited to endolysosomes via its HPS3 subunit. Structural modeling suggests that all four subunits are proto-coatomer proteins, with important implications for BLOC-2's molecular function. The discovery of Dictyostelium BLOC-2 permits identification of orthologs throughout eukaryotes. BLOC-2 and lysosome-related organelles, therefore, pre-date the evolution of Metazoa and have broader and more conserved functions than previously thought.


Asunto(s)
Dictyostelium , Lisosomas , Proteínas Protozoarias , Dictyostelium/genética , Dictyostelium/metabolismo , Lisosomas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Animales , Evolución Molecular , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo
2.
Sci Transl Med ; 16(751): eadi5336, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865484

RESUMEN

In chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.


Asunto(s)
Reposicionamiento de Medicamentos , Leucemia Mielógena Crónica BCR-ABL Positiva , Mitocondrias , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Animales , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Piperazinas/farmacología , Piperazinas/uso terapéutico , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Calcio/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico
3.
Nat Commun ; 15(1): 1931, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431691

RESUMEN

Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Quinasas Activadas por AMP , Purinas/uso terapéutico , Nucleótidos de Purina , Ácido Fólico/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico
4.
Cell Rep ; 43(3): 113868, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421868

RESUMEN

Modeling tumor metabolism in vitro remains challenging. Here, we used galactose as an in vitro tool compound to mimic glycolytic limitation. In contrast to the established idea that high glycolytic flux reduces pyruvate kinase isozyme M2 (PKM2) activity to support anabolic processes, we have discovered that glycolytic limitation also affects PKM2 activity. Surprisingly, despite limited carbon availability and energetic stress, cells induce a near-complete block of PKM2 to divert carbons toward serine metabolism. Simultaneously, TCA cycle flux is sustained, and oxygen consumption is increased, supported by glutamine. Glutamine not only supports TCA cycle flux but also serine synthesis via distinct mechanisms that are directed through PKM2 inhibition. Finally, deleting mitochondrial one-carbon (1C) cycle reversed the PKM2 block, suggesting a potential formate-dependent crosstalk that coordinates mitochondrial 1C flux and cytosolic glycolysis to support cell survival and proliferation during nutrient-scarce conditions.


Asunto(s)
Glutamina , Piruvato Quinasa , Piruvato Quinasa/metabolismo , Glutamina/metabolismo , Glucólisis , Carbono , Serina/metabolismo
5.
Cell Death Dis ; 15(2): 105, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302438

RESUMEN

Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.


Asunto(s)
Microbioma Gastrointestinal , Succinatos , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/metabolismo
6.
Nat Cancer ; 5(4): 659-672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286828

RESUMEN

The mitochondrial genome (mtDNA) encodes essential machinery for oxidative phosphorylation and metabolic homeostasis. Tumor mtDNA is among the most somatically mutated regions of the cancer genome, but whether these mutations impact tumor biology is debated. We engineered truncating mutations of the mtDNA-encoded complex I gene, Mt-Nd5, into several murine models of melanoma. These mutations promoted a Warburg-like metabolic shift that reshaped tumor microenvironments in both mice and humans, consistently eliciting an anti-tumor immune response characterized by loss of resident neutrophils. Tumors bearing mtDNA mutations were sensitized to checkpoint blockade in a neutrophil-dependent manner, with induction of redox imbalance being sufficient to induce this effect in mtDNA wild-type tumors. Patient lesions bearing >50% mtDNA mutation heteroplasmy demonstrated a response rate to checkpoint blockade that was improved by ~2.5-fold over mtDNA wild-type cancer. These data nominate mtDNA mutations as functional regulators of cancer metabolism and tumor biology, with potential for therapeutic exploitation and treatment stratification.


Asunto(s)
ADN Mitocondrial , Glucólisis , Inhibidores de Puntos de Control Inmunológico , Melanoma , Mutación , ADN Mitocondrial/genética , Animales , Melanoma/genética , Melanoma/tratamiento farmacológico , Ratones , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Glucólisis/genética , Microambiente Tumoral , Línea Celular Tumoral , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Mitocondrias/metabolismo , Mitocondrias/genética , Fosforilación Oxidativa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...