Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39065750

RESUMEN

HIV drug resistance compromises the ability of anti-retroviral therapy (ART) to suppress viral replication, resulting in treatment failure. This study investigates the prevalence of pre-treatment drug resistance (PDR) in newly diagnosed individuals in a prosperous city (Wenzhou) in Southeastern China. A cross-sectional investigation was carried out among 473 newly diagnosed ART-naive HIV-1-infected individuals between January and December 2022. The protease-reverse transcriptase (PR-RT) region and integrase (IN) region of HIV-1 were amplified by two separately nested PCRs, followed by sequencing. Drug resistance mutations (DRMs) and drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs) and integrase strand transfer inhibitors (INSTIs) were analyzed. The PDR prevalence was 6.5% [95% CI: 4.4-9.1] for any anti-retroviral drug, 0.9% [95% CI: 0.3-2.3] for NRTIs, 4.1% [95% CI: 2.5-6.5] for NNRTIs, 1.8% [95% CI: 0.8-3.6] for PIs and 0.5% [95% CI: 0.1-1.8] for INSTIs. According to the subtyping results of the PR-RT region, 11 different subtypes and 31 unique recombinant forms (URFs) were found. CRF07_BC was the dominant subtype (53.7%, 233/434), followed by CRF01_AE (25.3%, 110/434). V179D (1.6%) and K103N (1.4%) were the most predominant types of NNRTI DRMs. Q58E (1.2%) and M184V (0.7%) were the most frequent PI DRMs and NRTI DRMs, respectively. The INSTI-related DRMs Y143S (causes high-level resistance to RAL) and G163K (causes low-level resistance to EVG and RAL) were found in one patient each. Given the relatively high PDR prevalence of NNRTI (4.1%), non-NNRTI-based ART may be preferred in the future. It is recommended to include genotypic resistance testing before starting ART in regions where feasible.

2.
Front Nutr ; 11: 1329720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798772

RESUMEN

Background: There has been a gradual increase in the proportion of preterm birth in China during the past several decades. Maternal malnutrition is a significant determinant for preterm birth. Nevertheless, comprehensive studies investigating serum mineral levels during pregnancy associated with preterm birth remain scarce. This study aims to assess the associations between maternal serum mineral levels and the risk of preterm birth. Methods: This retrospective cohort study of 18,048 pregnant women used data from a tertiary hospital in China from January 2016 to December 2022. Demographic data and serum mineral concentrations in the second and third trimesters of mothers were collected from the hospital information system. Analysis was performed using restricted cubic splines and logistic regression models. Results: The proportion of preterm birth in this study was 6.01%. Phosphorus [P for overall = 0.005; P for nonlinear = 0.490; OR (95%CI) = 1.11 (1.04, 1.18)] and chlorine [P for overall = 0.002; P for nonlinear = 0.058; OR (95%CI) = 1.11 (1.03, 1.19)] showed a significant positive correlation with preterm birth in a linear fashion. Furthermore, serum levels of potassium (P for nonlinear <0.001), sodium (P for nonlinear = 0.004), and magnesium (P for nonlinear <0.001) exhibited non-linear relationships with the risk of preterm birth. Conclusion: Serum levels of some minerals during pregnancy were associated with the risk of preterm birth among pregnant women. In addition to commonly recognized micronutrients such as folic acid, iron, and vitamin D, healthcare providers should also pay attention to the levels of these minerals during pregnancy.

3.
ACS Infect Dis ; 9(11): 2306-2315, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811564

RESUMEN

Controlling and mitigating infectious diseases caused by multiple pathogens or pathogens with several subtypes require multiplex nucleic acid detection platforms that can detect several target genes rapidly, specifically, sensitively, and simultaneously. Here, we develop a detection platform, termed Multiplex Assay of RPA and Collateral Effect of Cas12a-based System (MARPLES), based on multiplex nucleic acid amplification and Cas12a ssDNase activation to diagnose these diseases and identify their pathogens. We use the clinical specimens of hand, foot, and mouth disease (HFMD) and influenza A to evaluate the feasibility of MARPLES in diagnosing the disease and identifying the pathogen, respectively, and find that MARPLES can accurately diagnose the HFMD associated with enterovirus 71, coxsackievirus A16 (CVA16), CVA6, or CVA10 and identify the exact types of H1N1 and H3N2 in an hour, showing high sensitivity and specificity and 100% predictive agreement with qRT-PCR. Collectively, our findings demonstrate that MARPLES is a promising multiplex nucleic acid detection platform for disease diagnosis and pathogen identification.


Asunto(s)
Enfermedad de Boca, Mano y Pie , Subtipo H1N1 del Virus de la Influenza A , Ácidos Nucleicos , Humanos , Sistemas CRISPR-Cas , Recombinasas , Subtipo H3N2 del Virus de la Influenza A , Sensibilidad y Especificidad , Nucleotidiltransferasas , Reacción en Cadena de la Polimerasa Multiplex
4.
Chemosphere ; 337: 139057, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37268234

RESUMEN

Advanced oxidation processes (AOPs) using strongly oxidizing radicals are promising for wastewater treatment and gas purification. Nevertheless, the short half-life of radicals and the limited mass transfer in traditional reactors cause under-utilization of radicals and low pollutant removal efficiency. High-gravity technology (HiGee)-enhanced AOPs (HiGee-AOPs) have been demonstrated a promising way to enhance radical utilization in a rotating packed bed reactor (RPB). Here, we review the potential mechanisms of intensified radical utilization in HiGee-AOPs, structures and performance of RPB, and applications of HiGee in AOPs. The intensification mechanisms are described from three aspects: enhanced generation of radicals by efficient mass transfer, in-situ radical utilization under frequent liquid film renewal, and selective effect on radical utilization due to micromixing in RPB. Based on these mechanisms, we propose a novel High-gravity flow reaction with the essence of efficiency, in-situ, and selectivity in order to better explain the strengthening mechanisms in HiGee-AOPs. HiGee-AOPs possess great potential for treating effluent and gaseous pollutants due to characteristics of High-gravity flow reaction. We discuss the pros and cons of different RPBs and their applications to specific HiGee-AOPs. HiGee improve the following AOPs: (1) facilitate interfacial mass transfer in homogeneous AOPs, (2) enhance mass transfer to expose more catalytically active sites and mass-produce nanocatalysts for heterogeneous AOPs, (3) inhibit bubble accumulation on the electrode surface of electrochemical AOPs, (4) increase the mass transfer between liquid and catalysts in UV-assisted AOPs, (5) improve the micromixing efficiency of ultrasound-based AOPs. Strategies outlined in this paper should inspire further development of HiGee-AOPs.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Gases , Oxidación-Reducción , Radicales Libres , Radical Hidroxilo/química , Contaminantes Químicos del Agua/análisis
5.
ACS Omega ; 8(13): 11790-11800, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033814

RESUMEN

This work presents a screening method of physical solvents for methyl mercaptan (MeSH) absorption using quantum chemical calculations. The absorption solubility and thermodynamic behaviors of dimethyl sulfoxide (DMSO), sulfolane (SUL), propylene carbonate (PC), N,N-dimethylformamide (DMF), and 1-methyl-2-pyrrolidinone (NMP) for MeSH were calculated and analyzed using the COSMO-RS model, and the absorption mechanism was probed combining the quantum theory of atoms in molecules (QTAIM) and reduced density gradient (RDG). Results show that the absorption solubility of the five solvents for MeSH by COSMO-RS model calculations follow the order of NMP > PC > DMSO > SUL > DMF, and the van der Waals forces and hydrogen bond forces determine the absorption solubility of physical solvents for MeSH. In addition, the experimental results of MeSH Henry coefficients in the above five solvents follow the same order as the calculated results. However, the calculated Henry coefficients' value largely deviates from the experimental value; therefore, we believe that this calculation method is only available for qualitative screening. This work provided a feasible approach to screening high-performance physical solvents for MeSH removal.

6.
Chem Biodivers ; 20(5): e202201228, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027372

RESUMEN

Guizhi granules mainly treat colds and improve overall health. They are widely used in clinical practice, but their protective effect and anti-inflammatory mechanism against influenza are unclear. In this study, the therapeutic effect of Guizhi granules on influenza was verified in vitro. The active compounds, targets, and cellular pathways of Guizhi granules against influenza were predicted using network pharmacology. The protein-protein interaction and component-target networks identified 5 core targets (JUN, TNF-α, RELA, AKT1, and MAPK1) and components (dihydrocapsaicin, kumatakenin, calycosin, licochalcone A, and berberine). GO and KEGG enrichment analyses revealed the anti-influenza pathways of Guizhi granules as antiviral and anti-inflammatory pathways. Molecular docking further verified that the core targets and components have good or strong binding activity. Therefore, the active ingredients, targets, and molecular mechanisms of Guizhi granules involved in influenza treatment were elucidated.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Factor de Necrosis Tumoral alfa , Medicamentos Herbarios Chinos/farmacología
7.
Sci Rep ; 13(1): 2627, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788268

RESUMEN

This study aims to investigate the association between maternal blood parameters and the risk of neonatal pathological jaundice. A retrospective case-control study of 1309 newborns and their mothers from 2019 to 2020 in a single-center tertiary hospital. All mothers received a complete routine blood test prior to delivery, and outcome was neonatal pathological jaundice. We performed stepwise logistic regression modeling to identify maternal blood factors associated with neonatal pathological jaundice. 258 neonates (19.71%) were diagnosed with pathological jaundice. Logistic regression results showed that the odds ratio for pathological jaundice in neonates of mothers with high white blood cell (WBC) count was 1.512 (95% CI 1.145-1.998; P = 0.004). Besides, neonates whose mothers had a high mean corpuscular volume (MCV) during pregnancy doubled the odds of developing pathological jaundice (OR = 1.967; 95% CI 1.043-3.711; P = 0.037). Among neonates, those whose mothers had high levels of WBC count and MCV were at increased risk of pathological jaundice. Regular obstetric examinations and routine blood tests are essential to initiate adapted care.


Asunto(s)
Ictericia Neonatal , Ictericia , Femenino , Embarazo , Recién Nacido , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Madres , Pruebas Hematológicas , Ictericia Neonatal/epidemiología , Ictericia/complicaciones , Factores de Riesgo
8.
Front Cell Infect Microbiol ; 12: 829380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663472

RESUMEN

In 2019, a dengue outbreak occurred with 290 confirmed cases in Wenzhou, a coastal city in southeast China. To identify the origin of the dengue virus (DENV) from this outbreak, viral RNA was extracted from four serum samples and sequenced for whole genome analysis. Then, phylogenetic analysis, gene mutation, secondary structure prediction, selection pressure analysis, and recombination analysis were performed. DENV strains Cam-03 and Cam-11 were isolated from patients traveling from Cambodia, while ZJWZ-18 and ZJWZ-62 strains were isolated from local patients without a record of traveling abroad. The whole genome sequence of all four strains was 10,735 nucleotides long. Phylogenetic tree analysis showed that the four strains belonged to genotype 1 of DENV-1, but the local Wenzhou strains and imported strains clustered in different branches. ZJWZ-18 and ZJWZ-62 were closely related to strain MF033254-Singapore-2016, and Cam-03 and Cam-11 were closely related to strain AB608788-China : Taiwan-1994. A comparison of the coding regions between the local strains and the DENV-1 standard strain (EU848545-Hawaii-1944) showed 82 amino acid mutations between the two strains. A total of 55 amino acid mutations were found between the coding regions of the local and imported strains. The overall secondary structure of the 3' UTR of the local strains had changed: apparent changes in the head and tail position were observed when compared to DENV-1 standard strain. Furthermore, selection pressure analysis and recombination detection using the 4 isolates and 41 reference strains showed two credible positive selection sites and eight credible recombination events, which warrant further studies. This study may enhance the understanding of viral replication, infection, evolution, virulence, and pathogenicity of DENV.


Asunto(s)
Virus del Dengue , Dengue , Aminoácidos , China/epidemiología , Dengue/epidemiología , Brotes de Enfermedades , Genoma Viral , Genotipo , Humanos , Filogenia
9.
Chemosphere ; 297: 134215, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35248597

RESUMEN

In this work, a desulfurization method using natural amino acid salts (AAS), which can be green prepared by biological fermentation, is proposed to remove H2S from raw biogas. Biogas purification and fertilizer production can be simultaneously achieved to close sulfur recycle. The reaction kinetic characteristics of H2S absorption with three kinds of AAS, including potassium ß-alaninate (PA), potassium sarcosinate (PS) and potassium l-prolinate (PP) are first studied. Kinetic parameters including orders of reaction, rate constants, pre-exponential factors and activation energies are given. AAS absorbent exhibits good potential for biogas desulfurization. Higee (high gravity) technology is utilized to intensify H2S removal. The effects of operating conditions on H2S removal efficiency are investigated and PP shows the best desulfurization performance. The phytotoxicity of AAS and amino acid salt sulfide (AASS) is assessed by the germination index of mungbean seeds. PP and its salt sulfide (PPS) show relatively low phytotoxicity and their allowable agricultural feeding concentrations are below 0.08 M and 0.04 M, respectively. The desulfurization method demonstrates a green route for biogas purification to achieve sulfur recycle.


Asunto(s)
Biocombustibles , Sulfuro de Hidrógeno , Aminoácidos , Reactores Biológicos , Sulfuro de Hidrógeno/química , Potasio , Sales (Química) , Sulfuros , Azufre/metabolismo
10.
Brief Bioinform ; 22(2): 1215-1224, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32935831

RESUMEN

The pandemic of coronavirus disease 2019 (COVID-19) urgently calls for more sensitive molecular diagnosis to improve sensitivity of current viral nuclear acid detection. We have developed an anchor primer (AP)-based assay to improve viral RNA stability by bioinformatics identification of RNase-binding site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and implementing AP dually targeting the N gene of SARS-CoV-2 RNA and RNase 1, 3, 6. The arbitrarily primed polymerase chain reaction (AP-PCR) improvement of viral RNA integrity was supported by (a) the AP increased resistance of the targeted gene (N gene) of SARS-CoV-2 RNA to RNase treatment; (b) the detection of SARS-CoV-2 RNA by AP-PCR with lower cycle threshold values (-2.7 cycles) compared to two commercially available assays; (c) improvement of the viral RNA stability of the ORF gene upon targeting of the N gene and RNase. Furthermore, the improved sensitivity by AP-PCR was demonstrated by detection of SARS-CoV-2 RNA in 70-80% of sputum, nasal, pharyngeal swabs and feces and 36% (4/11) of urine of the confirmed cases (n = 252), 7% convalescent cases (n = 54) and none of 300 negative cases. Lastly, AP-PCR analysis of 306 confirmed and convalescent cases revealed prolonged presence of viral loading for >20 days after the first positive diagnosis. Thus, the AP dually targeting SARS-CoV-2 RNA and RNase improves molecular detection by preserving SARS-CoV-2 RNA integrity and reveals the prolonged viral loading associated with older age and male gender in COVID-19 patients.


Asunto(s)
COVID-19/virología , Reacción en Cadena de la Polimerasa/métodos , Ribonucleasas/metabolismo , SARS-CoV-2/metabolismo , Anciano , Sitios de Unión , Femenino , Humanos , Masculino , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...