Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 10: 49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595945

RESUMEN

The high stretchability of two-dimensional (2D) materials has facilitated the possibility of using external strain to manipulate their properties. Hence, strain engineering has emerged as a promising technique for tailoring the performance of 2D materials by controlling the applied elastic strain field. Although various types of strain engineering methods have been proposed, deterministic and controllable generation of the strain in 2D materials remains a challenging task. Here, we report a nanoimprint-induced strain engineering (NISE) strategy for introducing controllable periodic strain profiles on 2D materials. A three-dimensional (3D) tunable strain is generated in a molybdenum disulfide (MoS2) sheet by pressing and conforming to the topography of an imprint mold. Different strain profiles generated in MoS2 are demonstrated and verified by Raman and photoluminescence (PL) spectroscopy. The strain modulation capability of NISE is investigated by changing the imprint pressure and the patterns of the imprint molds, which enables precise control of the strain magnitudes and distributions in MoS2. Furthermore, a finite element model is developed to simulate the NISE process and reveal the straining behavior of MoS2. This deterministic and effective strain engineering technique can be easily extended to other materials and is also compatible with common semiconductor fabrication processes; therefore, it provides prospects for advances in broad nanoelectronic and optoelectronic devices.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37951383

RESUMEN

The disruption of the diurnal rhythm has been recognized as a significant contributing factor to metabolic dysregulation. The important role of gut microbiota and bile acid metabolism has attracted extensive attention. However, the function of the gut microbiota-bile acid axis in regulating the diurnal rhythms of metabolic homeostasis remains largely unknown. Herein, we aimed to investigate the interplay between rhythmicity of host metabolism and gut microbiota-bile acid axis, as well as to assess the impact of obesity on them. We found that high fat diet feeding and Leptin gene deficiency (ob/ob) significantly disturbed the rhythmic patterns of insulin sensitivity and serum total cholesterol levels. The bile acid profiling unveiled a conspicuous diurnal rhythm oscillation of ursodeoxycholic acid (UDCA) in lean mice, concomitant with fluctuations in insulin sensitivity, whereas it was absent in obese mice. The aforementioned diurnal rhythm oscillations were largely desynchronized by gut microbiota depletion, suggesting the indispensable role of gut microbiota in diurnal regulation of insulin sensitivity and bile acid metabolism. Consistently, 16S rRNA sequencing revealed that UDCA-associated bacteria exhibited diurnal rhythm oscillations that paralleled the fluctuation in insulin sensitivity. Collectively, the current study provides compelling evidence regarding the association between diurnal rhythm of insulin sensitivity and gut microbiota-bile acid axis. Moreover, we have elucidated the deleterious effects of obesity on gut microbiome-bile acid metabolism in both the genetic obesity model and the diet-induced obesity model.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Animales , Ratones , ARN Ribosómico 16S , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos y Sales Biliares , Ácido Ursodesoxicólico , Ritmo Circadiano
3.
Front Bioeng Biotechnol ; 11: 1261563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818237

RESUMEN

Daqu is a spontaneous, solid-state cereal fermentation product used for saccharification and as a starter culture for Chinese Baijiu production. Bacillus and Acinetobacter, two dominant microbial genera in Daqu, produce enzymes and organic acids that influence the Daqu quality. However, there are no rapid analytical methods for detecting Bacillus and Acinetobacter. We designed primers specific to the genera Bacillus and Acinetobacter to perform genetic comparisons using the 16 S rRNA. After amplification of polymerase chain reaction using specific primers, high-throughput sequencing was performed to detect strains of Bacillus and Acinetobacter. The results showed that the effective amplification rates for Bacillus and Acinetobacter in Daqu were 86.92% and 79.75%, respectively. Thus, we have devised and assessed a method to accurately identify the species associated with Bacillus and Acinetobacter in Daqu, which can also hold significance for bacterial typing and identification.

4.
Front Bioeng Biotechnol ; 11: 1251342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720319

RESUMEN

Introduction: Alkaline pectin lyase is an important enzyme with a wide range of applications in industrial production, It has been widely used in many important fields such as fruit juice processing and extraction, the dyeing and processing of cotton and linen textiles, degumming plant fibers, environmental industrial wastewater treatment, and pulp and paper production. PGLA-rep4 was previously generated as a modified alkaline pectin lyase with high specific activity at pH 11.0°C and 70°C. However, the pre-constructed high-activity pectin lyase expression strains are still difficult to apply in industrial production due to their limited enzymatic activity. We hope to solve these problems by combining modern breeding techniques with high-throughput equipment to rapidly screen alkaline pectin lyase with higher enzymatic activity and lower cost. Methods: We fused the genes encoding PGLA-rep4 and fluorescent protein egfp using a flexible linker peptide and ligated them into a temperature-sensitive plasmid, pKD46. The constructed screening plasmid pKD46-PGLA-rep4-egfp was then transformed into an expression host and screened via flow-cytometric cell sorting coupled with UV mutagenesis. Results: Following mutagenesis, primary screening, and secondary screening, the high-expression strain, named Escherichia coli BL21/1G3, was obtained. The screening plasmid pKD46-PGLA-rep4-egfp was eliminated, and the original expression plasmid pET28a-PGLA-rep4 was then retransformed into the mutant strains. After induction and fermentation, pectin lyase activity in E. coli BL21/1G3 was significantly increased (1.37-fold relative to that in the parental E. coli BL21/PGLA-rep4 strain, p < 0.001), and the highest activity was 230, 240 U/mL at 144 h. Genome sequencing revealed that genes encoding ribonuclease E (RNase E) and diadenosine tetraphosphatase (ApaH) of E. coli BL21/1G3 were mutated compared to the sequence in the original E. coli BL21 (DE3) strain, which could be associated with increased enzyme expression. Discussion: Our work provides an effective method for the construction of strains expressing pectin lyase at high levels.

5.
Small ; 19(44): e2302072, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431202

RESUMEN

Spectrally selective narrowband photodetection is critical for near-infrared (NIR) imaging applications, such as for communicationand night-vision utilities. It is a long-standing challenge for detectors based on silicon, to achieve narrowband photodetection without integrating any optical filters. Here, this work demonstrates a NIR nanograting Si/organic (PBDBT-DTBT:BTP-4F) heterojunction photodetector (PD), which for the first time obtains the full-width-at-half-maximum (FWHM) of only 26 nm and fast response of 74 µs at 895 nm. The response peak can be successfully tailored from 895 to 977 nm. The sharp and narrow response NIR peak is inherently attributed to the coherent overlapping between the NIR transmission spectrum of organic layer and diffraction enhanced absorption peak of patterned nanograting Si substrates. The finite difference time domain (FDTD) physics calculation confirms the resonant enhancement peaks, which is well consistent with the experiment results. Meanwhile, the relative characterization indicates that the introduction of the organic film can promote carrier transfer and charge collection, facilitating efficient photocurrent generation. This new device design strategy opens up a new window in developing low-cost sensitive NIR narrowband detection.

6.
Microsyst Nanoeng ; 9: 8, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636368

RESUMEN

Metallic nanostructures are becoming increasingly important for both fundamental research and practical devices. Many emerging applications employing metallic nanostructures often involve unconventional substrates that are flexible or nonplanar, making direct lithographic fabrication very difficult. An alternative approach is to transfer prefabricated structures from a conventional substrate; however, it is still challenging to maintain high fidelity and a high yield in the transfer process. In this paper, we propose a high-fidelity, clean nanotransfer lithography method that addresses the above challenges by employing a polyvinyl acetate (PVA) film as the transferring carrier and promoting electrostatic adhesion through triboelectric charging. The PVA film embeds the transferred metallic nanostructures and maintains their spacing with a remarkably low variation of <1%. When separating the PVA film from the donor substrate, electrostatic charges are generated due to triboelectric charging and facilitate adhesion to the receiver substrate, resulting in a high large-area transfer yield of up to 99.93%. We successfully transferred the metallic structures of a variety of materials (Au, Cu, Pd, etc.) with different geometries with a <50-nm spacing, high aspect ratio (>2), and complex 3D structures. Moreover, the thin and flexible carrier film enables transfer on highly curved surfaces, such as a single-mode optical fiber with a curvature radius of 62.5 µm. With this strategy, we demonstrate the transfer of metallic nanostructures for a compact spectrometer with Cu nanogratings transferred on a convex lens and for surface-enhanced Raman spectroscopy (SERS) characterization on graphene with reliable responsiveness.

7.
Cell Stem Cell ; 29(9): 1366-1381.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055192

RESUMEN

Although disrupted bile acid (BA) homeostasis is implicated in inflammatory bowel disease (IBD), the role of hepatic BA metabolism in the pathogenesis of colitis is poorly understood. Here, we found that cholic acid (CA) levels were increased in patients and mice. Cytochrome P450 8B1 (CYP8B1), which synthesizes CA, was induced in livers of colitic mice. CA-treated or liver Cyp8b1-overexpressing mice developed more severe colitis with compromised repair of the mucosal barrier, whereas Cyp8b1-knockout mice were resistant to colitis. Mechanistically, CA inhibited peroxisome proliferator-activated receptor alpha (PPARα), resulting in impeded fatty acid oxidation (FAO) and impaired Lgr5+ intestinal stem cell (ISC) renewal. A PPARα agonist restored FAO and improved Lgr5+ ISC function. Activation of the farnesoid X receptor (FXR) suppressed liver CYP8B1 expression and ameliorated colitis in mice. This study reveals a connection between the hepatic CYP8B1-CA axis and colitis via regulating intestinal epithelial regeneration, suggesting that BA-based strategies might be beneficial in IBD treatment.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ácidos y Sales Biliares , Autorrenovación de las Células , Ácido Cólico/metabolismo , Ácido Cólico/farmacología , Colitis/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo
8.
Light Sci Appl ; 11(1): 89, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396549

RESUMEN

Functional nanostructures are exploited for a variety of cutting-edge fields including plasmonics, metasurfaces, and biosensors, just to name a few. Some applications require nanostructures with uniform feature sizes while others rely on spatially varying morphologies. However, fine manipulation of the feature size over a large area remains a substantial challenge because mainstream approaches to precise nanopatterning are based on low-throughput pixel-by-pixel processing, such as those utilizing focused beams of photons, electrons, or ions. In this work, we provide a solution toward wafer-scale, arbitrary modulation of feature size distribution by introducing a lithographic portfolio combining interference lithography (IL) and grayscale-patterned secondary exposure (SE). Employed after the high-throughput IL, a SE with patterned intensity distribution spatially modulates the dimensions of photoresist nanostructures. Based on this approach, we successfully fabricated 4-inch wafer-scale nanogratings with uniform linewidths of <5% variation, using grayscale-patterned SE to compensate for the linewidth difference caused by the Gaussian distribution of the laser beams in the IL. Besides, we also demonstrated a wafer-scale structural color painting by spatially modulating the filling ratio to achieve gradient grayscale color using SE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA