Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Adv Healthc Mater ; : e2401625, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39491532

RESUMEN

The development of cancer vaccines is at the forefront of cancer immunotherapy. Most existing strategies to induce an efficient anti-tumor immune response rely on molecular adjuvants and the incorporation of complex synthetic vectors into vaccine formulations. In contrast, this study introduces a one-step engineering technique to assemble the model antigen, Ovalbumin (OVA), into amyloid aggregates, leveraging biomimetic folding and aggregation to create non-fibrillar OVA globular aggregates and OVA amyloid-like fibrils as single-component, adjuvant-free vaccines. Notably, the OVA amyloid-like fibrils induced stronger immune responses compared to the native form, as evidenced by robust humoral immune reactions and the establishment of immune memory. These enhanced responses can be attributed to the self-adjuvant effect of the unique assembled structure, which preserves antigenic epitopes, improves antigen stability, facilitates antigen internalization, prolongs retention at the injection site, enhances antigen trafficking to the lymphoid organs, and promotes increased secretion of antibodies and cytokines. Furthermore, the efficacy of the vaccine was validated in a high OVA-expressing tumor model, demonstrating the potential of OVA amyloid-like fibrils as an effective vaccine for cancer immunoprevention. This minimalist self-adjuvant vaccine strategy holds promising implications for cancer immunotherapy and can inform the design of other protein antigen-based vaccines.

2.
Adv Sci (Weinh) ; : e2407225, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412068

RESUMEN

Oxidative stress is a major factor affecting spinal cord injury (SCI) prognosis. A ruthenium metal complex can aid in treating SCI by scavenging reactive oxygen species via a protein-regulated mechanism to alleviate oxidative stress. This study aimed to introduce a pioneering strategy for SCI treatment by designing two novel half-sandwich ruthenium (II) complexes containing diverse N^N-chelating ligands. The general formula is [(η6-Arene)Ru(N^N)Cl]PF6, where arene is either 2-phenylethanol-1-ol (bz-EA) or 3-phenylpropanol-1-ol (bz-PA), and the N^N-chelating ligands are fluorine-based imino-pyridyl ligands. This study shows that these ruthenium metal complexes protect neurons by scavenging reactive oxygen species. Notably, η6-Arene substitution from bz-PA to bz-EA significantly enhances reactive oxygen species scavenging ability and neuroprotective effect. Additionally, molecular dynamics simulations indicate that the ruthenium metal complex increases Antioxidant 1 Copper Chaperone protein expression, reduces oxidative stress, and protects neurons during SCI treatment. Furthermore, ruthenium metal complex protected spinal cord neurons and stimulated their regeneration, which improves electrical signals and motor functions in mice with SCI. Thus, this treatment strategy using ruthenium metal complexes can be a new therapeutic approach for the efficient treatment of SCI.

3.
J Hazard Mater ; 480: 136096, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383692

RESUMEN

Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.

4.
J Nanobiotechnology ; 22(1): 653, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39443923

RESUMEN

Spinal cord injury (SCI) often accompanies impairment of motor function, yet there is currently no highly effective treatment method specifically for this condition. Oxidative stress and inflammation are pivotal factors contributing to severe neurological deficits after SCI. In this study, a type of curcumin (Cur) nanoparticle (HA-CurNPs) was developed to address this challenge by alleviating oxidative stress and inflammation. Through non-covalent interactions, curcumin (Cur) and poly (-)-epigallocatechin-3-gallate (pEGCG) are co-encapsulated within hyaluronic acid (HA), resulting in nanoparticles termed HA-CurNPs. These nanoparticles gradually release curcumin and pEGCG at the SCI site. The released pEGCG and curcumin not only scavenge reactive oxygen species (ROS) and prevents apoptosis, thereby improving the neuronal microenvironment, but also regulate CD74 to promote microglial polarization toward an M2 phenotype, and inhibits M1 polarization, thereby suppressing the inflammatory response and fostering neuronal regeneration. Moreover, in vivo experiments on SCI mice demonstrate that HA-CurNPs effectively protect neuronal cells and myelin, reduce glial scar formation, thereby facilitating the repair of damaged spinal cord tissues, restoring electrical signaling at the injury site, and improving motor functions. Overall, this study demonstrates that HA-CurNPs significantly reduce oxidative stress and inflammation following SCI, markedly improving motor function in SCI mice. This provides a promising therapeutic approach for the treatment of SCI.


Asunto(s)
Catequina , Curcumina , Inflamación , Ratones Endogámicos C57BL , Nanopartículas , Estrés Oxidativo , Traumatismos de la Médula Espinal , Animales , Curcumina/farmacología , Curcumina/química , Traumatismos de la Médula Espinal/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Ratones , Nanopartículas/química , Inflamación/tratamiento farmacológico , Catequina/farmacología , Catequina/química , Catequina/análogos & derivados , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Polietilenglicoles/química , Polietilenglicoles/farmacología , Femenino , Recuperación de la Función/efectos de los fármacos
5.
Chemosphere ; 366: 143555, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39424158

RESUMEN

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased concomitantly with heightened exposure to environmental chemicals, such as benzophenone-type ultraviolet (BP-type UV) filters and parabens, which are prevalent in personal care products. This study aimed to investigate the potential link between the exposure to these chemicals and the risk of developing NAFLD. We conducted a case-control study involving 228 participants from South China, encompassing individuals diagnosed with NAFLD and healthy controls. Blood samples were collected and analyzed for the presence of 11 parabens and 8 BP-type UV filters. The findings revealed significantly elevated concentrations of several parabens and BP-type UV filters in the blood of patients with NAFLD compared with the healthy cohort. Notably, methylparaben (MeP), ethylparaben (EtP), isopropylparaben (iPrP), butylparaben (BuP), isobutylparaben (iBuP), 3,4-dihydroxybenzoic acid (3,4-DHB), total parabens (Σparabens), BP1, BP3, BP4, and 4-hydroxybenzophenone (4-OH-BP) were identified as significant predictors of NAFLD prevalence. Through multiple regression analyses, the blood levels of iBuP, Σparabens, and BP4 were found to be significantly associated with elevated triglycerides (TG) (ß = 0.59 mmol/L, 95% CI = 0.11-1.59), total bilirubin (TBIL) (ß = 2.81 µmol/L, 95% CI = 0.46-15.6) or direct bilirubin (DBIL) (ß = 1.89 µmol/L, 95% CI = 0.47-10.2), and reduced globulins (GLB) (ß = -0.29 g/L, 95% CI = -0.07 to -5.45), respectively, which are indicators of liver damage. Moreover, TBIL and DBIL were found to mediate 26.7% and 24.6% of the increase in NAFLD prevalence associated with Σparabens, respectively. In conclusion, this study offers pioneering insights into human exposure to parabens and BP-type UV filters as well as their hepatotoxic potential.


Asunto(s)
Benzofenonas , Enfermedad del Hígado Graso no Alcohólico , Parabenos , Parabenos/análisis , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Benzofenonas/toxicidad , Estudios de Casos y Controles , Femenino , Persona de Mediana Edad , Masculino , Adulto , China/epidemiología , Protectores Solares/toxicidad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos
6.
Sensors (Basel) ; 24(20)2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39460176

RESUMEN

High-temperature furnaces and coal-fired boilers are widely employed in the petrochemical and metal-smelting sectors. Over time, the deterioration, corrosion, and wear of pipelines can lead to equipment malfunctions and safety incidents. Nevertheless, effective real-time monitoring of equipment conditions remains insufficient, primarily due to the interference caused by flames generated from fuel combustion. To address this issue, in this study, a through-flame infrared imager is developed based on the mid-wave infrared (MWIR) radiation characteristics of the flame. The imager incorporates a narrowband filter that operates within the wavelength range of 3.80 µm to 4.05 µm, which is integrated into conventional thermal imagers to perform flame filtering. This configuration enables the radiation from the background to pass through the flame and reach the detector, thereby allowing the infrared imager to visualize objects obscured by the flame and measure their temperatures directly. Our experimental findings indicate that the imager is capable of through-flame imaging; specifically, when the temperature of the target exceeds 50 °C, the imager can effectively penetrate the outer flame of an alcohol lamp and distinctly capture the target's outline. Importantly, as the temperature of the target increases, the clarity of the target's contour in the images improves. The MWIR through-flame imager presents considerable potential for the real-time monitoring and preventive maintenance of high-temperature furnaces and similar equipment, such as detecting the degradation of refractory materials and damage to pipelines.

7.
J Anim Sci Biotechnol ; 15(1): 133, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39369257

RESUMEN

BACKGROUND: Progressive oxidative stress easily occurs as a result of a gradual increase in the intensity of maternal metabolism due to rapid foetal development and increased intensity of lactation. However, studies on the effects of processive oxidative stress on nutrient transport in the placenta have received little attention. The present study was conducted on sows at 85 days of gestation to study the effects of pterostilbene (PTE) on maternal oxidative stress status and placental nutrient transport. RESULTS: PTE increased the antioxidant capacity and immunoglobulin content in mothers' blood and milk, reduced the level of inflammatory factors, and improved the nutrient content of milk. PTE also reduced sow backfat loss and the number of weak sons, and increased piglet weaning weight and total weaning litter weight. We subsequently found that PTE enhanced placental glucose and fatty acid transport and further affected glycolipid metabolism by increasing the expression of LAL, PYGM, and Gbe-1, which activated the PI3K phosphorylation pathway. Moreover, PTE addition altered the relative abundance of the Firmicutes, Proteobacteria, Parabacillus, and Bacteroidetes-like RF16 groups in sow faeces. PTE increased the levels of acetate, propionate, butyrate and isovalerate in the faeces. CONCLUSIONS: These findings reveal that the addition of PTE during pregnancy and lactation mitigates the effects of processive oxidative stress on offspring development by altering maternal microbial and placental nutrient transport capacity.

8.
J Sci Food Agric ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264139

RESUMEN

BACKGROUND: Ginseng-Douchi (GD) is a complex fermented product of ginseng and soybean, similar to natto, and is effective in the treatment of hyperlipidemia, but the mechanism of action involved needs to be further explored. RESULTS: The present study combines a comprehensive strategy of network pharmacology and metabolomics to explore the lipid-lowering mechanism of GD. First, a hyperlipidemia rats model induced by a high-fat diet was established to evaluate the therapeutic effects of GD. Second, potential biomarkers were identified using serum metabolomics and metabolic pathway analysis was performed with MetaboAnalyst. Third, network pharmacology is used to find potential therapeutic targets based on the blood-influencing components of GD. Finally, core targets were obtained through a target-metabolite and the enrichment analysis of biomarkers-genes. Biochemistry analysis showed that GD exerted hypolipidemic effects on hyperlipidemic rats. Nineteen potential biomarkers for the GD treatment of hyperlipidemia were identified by metabolomics, which was mainly involved in linoleic acid metabolism, glycerophospholipid metabolism, ether lipid metabolism, alpha-linolenic acid metabolism and glycosylphosphatidylinositol-anchor biosynthesis. GD had a callback function for ether lipid metabolism and glycerophospholipid metabolism pathways. Eighteen blood components were identified in serum, associated with 85 potential therapeutic targets. The joint analysis showed that three core therapeutic targets were regulated by GD, including PIK3CA, AKT1 and EGFR. CONCLUSION: This study combines serum medicinal chemistry of traditional Chinese medicine, network pharmacology and metabolomics to reveal the regulatory mechanism of GD on hyperlipidemia. © 2024 Society of Chemical Industry.

9.
Front Psychol ; 15: 1433331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233883

RESUMEN

Purpose: The present study aimed to further examine the factor structure and measurement invariance of the UDRQ among a sample of Hungarian university students. Methods: Firstly, the factor structure of the UDRQ was examined among 837 Hungarian university students. Specifically, two measurement models (first-order model and second-order model) were constructed and compared. Secondly, the internal consistency reliability of the UDRQ was examined. Thirdly, measurement invariance of the UDRQ was evaluated across genders. Finally, measurement invariance of the UDRQ was evaluated across two different samples. Results: It was found that the first-order model outperformed the second-order model and better represented the factor structure of the UDRQ subscales. Results of Cronbach's alpha and Composite Reliability suggested that the internal consistency reliabilities of the two UDRQ subscales were satisfactory. Measurement invariance analysis revealed that the UDRQ measurement model was strict invariant across genders and samples. Conclusion: The findings of the present study indicated that the UDRQ displayed satisfactory reliability and validity and could be used to assess demands and resources of Hungarian university students.

10.
Nat Commun ; 15(1): 8157, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289393

RESUMEN

Intermetallic nanoparticles (NPs) possess significant potentials for catalytic applications, yet their production presents challenges as achieving the disorder-to-order transition during the atom ordering process involves overcoming a kinetic energy barrier. Here, we demonstrate a robust approach utilizing atomic gas-migration for the in-situ synthesis of stable and homogeneous intermetallic alloys for propane dehydrogenation (PDH). This approach relies on the physical mixture of two separately supported metal species in one reactor. The synthesized platinum-zinc intermetallic catalysts demonstrate exceptional stability for 1300 h in continuous propane dehydrogenation under industrially relevant industrial conditions, with extending 95% propylene selectivity and propane conversions approaching thermodynamic equilibrium values at 550-600 oC. In situ characterizations and density functional theory/molecular dynamics simulation reveal Zn atoms adsorb on the particle surface and then diffuse inward, aiding in the formation of ultrasmall and highly ordered intermetallic alloys. This in-situ gas-migration strategy is applicable to a wide range of intermetallic systems.

11.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275496

RESUMEN

Real-time seed detection on resource-constrained embedded devices is essential for the agriculture industry and crop yield. However, traditional seed variety detection methods either suffer from low accuracy or cannot directly run on embedded devices with desirable real-time performance. In this paper, we focus on the detection of rapeseed varieties and design a dual-dimensional (spatial and channel) pruning method to lighten the YOLOv7 (a popular object detection model based on deep learning). We design experiments to prove the effectiveness of the spatial dimension pruning strategy. And after evaluating three different channel pruning methods, we select the custom ratio layer-by-layer pruning, which offers the best performance for the model. The results show that using custom ratio layer-by-layer pruning can achieve the best model performance. Compared to the YOLOv7 model, this approach results in mAP increasing from 96.68% to 96.89%, the number of parameters reducing from 36.5 M to 9.19 M, and the inference time per image on the Raspberry Pi 4B reducing from 4.48 s to 1.18 s. Overall, our model is suitable for deployment on embedded devices and can perform real-time detection tasks accurately and efficiently in various application scenarios.


Asunto(s)
Algoritmos , Brassica rapa , Semillas , Aprendizaje Profundo , Agricultura/instrumentación , Agricultura/métodos , Brassica napus , Procesamiento de Imagen Asistido por Computador/métodos
12.
Surg Radiol Anat ; 46(11): 1795-1799, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39320388

RESUMEN

BACKGROUND: We observed a rare anatomical variation of a persistent first intersegmental vertebral artery in the C1-C2 region in an elderly Chinese male cadaver at Changzhi Medical College. In this case, the vertebral artery, rather than passing through the transverse foramen of the atlas, exits the transverse foramen of C2 and enters the spinal canal at the lower portion of the C1 posterior arch. The original transverse foramen of C1 was filled with connective tissue. This report details the anatomical characteristics of this abnormal vertebral artery and discusses its anatomical, surgical, and developmental implications. PURPOSE: We describe the detailed morphological features of a rare VA variant and discuss the anatomical, clinical, and developmental aspects of this case. METHODS: A case of head dissection. The anatomical characteristics of the VA were studied and documented, and anatomical measurements were collected. RESULTS: In this case, the vertebral artery, rather than passing through the transverse foramen of the atlas, exits the transverse foramen of C2 and enters the spinal canal at the lower portion of the C1 posterior arch. The original transverse foramen of C1 was filled with connective tissue. CONCLUSION: The anomalous development of segmental arteries in our case is linked to failures in the embryonic sclerotome reconstruction during development and failure.


Asunto(s)
Variación Anatómica , Cadáver , Arteria Vertebral , Humanos , Arteria Vertebral/anomalías , Arteria Vertebral/anatomía & histología , Masculino , Vértebras Cervicales/irrigación sanguínea , Vértebras Cervicales/anomalías , Anciano , Atlas Cervical/anomalías , Atlas Cervical/irrigación sanguínea , Atlas Cervical/anatomía & histología
13.
Cell Rep ; 43(8): 114636, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39154340

RESUMEN

Inflammatory bowel disease (IBD) has high prevalence in Western counties. The high fat content in Western diets is one of the leading causes for this prevalence; however, the underlying mechanisms have not been fully defined. Here, we find that high-fat diet (HFD) induces ferroptosis of intestinal regulatory T (Treg) cells, which might be the key initiating step for the disruption of immunotolerance and the development of colitis. Compared with effector T cells, Treg cells favor lipid metabolism and prefer polyunsaturated fatty acids (PUFAs) for the synthesis of membrane phospholipids. Therefore, consumption of HFD, which has high content of PUFAs such as arachidonic acid, cultivates vulnerable Tregs that are fragile to lipid peroxidation and ferroptosis. Treg-cell-specific deficiency of GPX4, the key enzyme in maintaining cellular redox homeostasis and preventing ferroptosis, dramatically aggravates the pathogenesis of HFD-induced IBD. Taken together, these studies expand our understanding of IBD etiology.


Asunto(s)
Colitis , Dieta Alta en Grasa , Ácidos Grasos Insaturados , Ferroptosis , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Linfocitos T Reguladores , Animales , Dieta Alta en Grasa/efectos adversos , Ferroptosis/efectos de los fármacos , Colitis/patología , Colitis/metabolismo , Colitis/inducido químicamente , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Masculino , Peroxidación de Lípido/efectos de los fármacos
14.
Environ Pollut ; 360: 124647, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089475

RESUMEN

The cold climates in autumn and winter threatens human health. The aim of this study was to reveal the effects of prolonged cold exposure on the liver and pancreas based on GLP-1R signaling, oxidative stress, endoplasmic reticulum (ER) stress and ferroptosis by Yorkshire pig models. Yorkshire pigs were divided into the control group and chronic cold stress (CCS) group. The results showed that CCS induced oxidative stress injury, activated Nrf2 pathway and inhibited the expression of GLP-1R in the liver and pancreas (P < 0.05). The toll-like receptor 4 (TLR4) pathway was activated in the liver and pancreas, accompanied by the enrichment of IL-1ß and TNF-α during CCS (P < 0.05). Moreover, the kinase RNA-like endoplasmic reticulum kinase (PERK), inositol requiring kinase 1 (IRE1), X-box-binding protein 1 (XBP1) and eukaryotic initiation factor 2α (eIF2α) expression in the liver and pancreas was up-regulated during CCS (P < 0.05). In addition, CCS promoted the prostaglandin-endoperoxide synthase 2 (PTGS2) expression and inhibited the ferritin H (FtH) expression in the liver. Summarily, CCS promotes inflammation, ER stress and apoptosis by inhibiting the GLP-1R signaling and inducing oxidative stress, and exacerbates the risk of ferroptosis in the liver and pancreas.


Asunto(s)
Estrés del Retículo Endoplásmico , Ferroptosis , Inflamación , Hígado , Páncreas , Transducción de Señal , Animales , Hígado/metabolismo , Páncreas/metabolismo , Porcinos , Inflamación/metabolismo , Estrés Oxidativo , Respuesta al Choque por Frío
15.
Cell Death Differ ; 31(11): 1519-1533, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39117783

RESUMEN

The survival and suppressive function of regulatory T (Treg) cells rely on various intracellular metabolic and physiological processes. Our study demonstrates that Vps34 plays a critical role in maintaining Treg cell homeostasis and function by regulating cellular metabolic activities. Disruption of Vps34 in Treg cells leads to spontaneous fatal systemic autoimmune disorder and multi-tissue inflammatory damage, accompanied by a reduction in the number of Treg cells, particularly eTreg cells with highly immunosuppressive activity. Mechanistically, the poor survival of Vps34-deficient Treg cells is attributed to impaired endocytosis, intracellular vesicular trafficking and autophagosome formation, which further results in enhanced mitochondrial respiration and excessive ROS production. Removal of excessive ROS can effectively rescue the death of Vps34-deficient Treg cells. Functionally, acute deletion of Vps34 within established Treg cells enhances anti-tumor immunity in a malignant melanoma model by boosting T-cell-mediated anti-tumor activity. Overall, our results underscore the pivotal role played by Vps34 in orchestrating Treg cell homeostasis and function towards establishing immune homeostasis and tolerance.


Asunto(s)
Supervivencia Celular , Fosfatidilinositol 3-Quinasas Clase III , Homeostasis , Oxidación-Reducción , Linfocitos T Reguladores , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Ratones , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Ratones Noqueados
16.
Natl Sci Rev ; 11(8): nwae265, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149116
17.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125650

RESUMEN

Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR formation of tea plant cuttings, but the regulation mechanism has not yet explained clearly. We conducted this study to elucidate the regulatory mechanism of exogenous auxin-induced adventitious root (AR) formation of such cuttings. The transcriptional expression profile of non-rooting tea calluses in response to exogenous IBA and NAA was analyzed using ONT RNA Seq technology. In total, 56,178 differentially expressed genes (DEGs) were detected, and most of genes were significantly differentially expressed after 12 h of exogenous auxin treatment. Among these DEGs, we further identified 80 DEGs involved in the auxin induction pathway and AR formation. Specifically, 14 auxin respective genes (ARFs, GH3s, and AUX/IAAs), 3 auxin transporters (AUX22), 19 auxin synthesis- and homeostasis-related genes (cytochrome P450 (CYP450) and calmodulin-like protein (CML) genes), and 44 transcription factors (LOB domain-containing protein (LBDs), SCARECROW-LIKE (SCL), zinc finger protein, WRKY, MYB, and NAC) were identified from these DEGs. Moreover, we found most of these DEGs were highly up-regulated at some stage before AR formation, suggesting that they may play a potential role in the AR formation of tea plant cuttings. In summary, this study will provide a theoretical foundation to deepen our understanding of the molecular mechanism of AR formation in tea cuttings induced by auxin during propagation time.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Transcriptoma , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/efectos de los fármacos , Camellia sinensis/metabolismo , Camellia sinensis/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
18.
Science ; 385(6706): 295-300, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39024431

RESUMEN

The industrial catalysts utilized for propane dehydrogenation (PDH) to propylene, an important alternative to petroleum-based cracking processes, either use expensive metals or metal oxides that are environmentally unbenign. We report that a typically less-active oxide, titanium oxide (TiO2), can be combined with earth-abundant metallic nickel (Ni) to form an unconventional Ni@TiOx catalyst for efficient PDH. The catalyst demonstrates a 94% propylene selectivity at 40% propane conversion and superior stability under industrially relevant conditions. Complete encapsulation of Ni nanoparticles was allowed at elevated temperatures (>550°C). A mechanistic study suggested that the defective TiOx overlayer consisting of tetracoordinated Ti sites with oxygen vacancies is catalytically active. Subsurface metallic Ni acts as an electronic promoter to accelerate carbon-hydrogen bond activation and hydrogen (H2) desorption on the TiOx overlayer.

19.
Theranostics ; 14(9): 3634-3652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948059

RESUMEN

Rationale: Molecular imaging of microenvironment by hypoxia-activatable fluorescence probes has emerged as an attractive approach to tumor diagnosis and image-guided treatment. Difficulties remain in its translational applications due to hypoxia heterogeneity in tumor microenvironments, making it challenging to image hypoxia as a reliable proxy of tumor distribution. Methods: We report a modularized theranostics platform to fluorescently visualize hypoxia via light-modulated signal compensation to overcome tumor heterogeneity, thereby serving as a diagnostic tool for image-guided surgical resection and photodynamic therapy. Specifically, the platform integrating dual modules of fluorescence indicator and photodynamic moderator using supramolecular host-guest self-assembly, which operates cooperatively as a cascaded "AND" logic gate. First, tumor enrichment and specific fluorescence turn-on in hypoxic regions were accessible via tumor receptors and cascaded microenvironment signals as simultaneous inputs of the "AND" gate. Second, image guidance by a lighted fluorescence module and light-mediated endogenous oxygen consumption of a photodynamic module as dual inputs of "AND" gate collaboratively enabled light-modulated signal compensation in situ, indicating homogeneity of enhanced hypoxia-related fluorescence signals throughout a tumor. Results: In in vitro and in vivo analyses, the biocompatible platform demonstrated several strengths including a capacity for dual tumor targeting to progressively facilitate specific fluorescence turn-on, selective signal compensation, imaging-time window extension conducive to precise normalized image-guided treatment, and the functionality of tumor glutathione depletion to improve photodynamic efficacy. Conclusion: The hypoxia-activatable, image-guided theranostic platform demonstrated excellent potential for overcoming hypoxia heterogeneity in tumors.


Asunto(s)
Imagen Óptica , Nanomedicina Teranóstica , Animales , Nanomedicina Teranóstica/métodos , Humanos , Imagen Óptica/métodos , Ratones , Microambiente Tumoral , Línea Celular Tumoral , Colorantes Fluorescentes/química , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Ratones Desnudos , Cirugía Asistida por Computador/métodos
20.
Cell Death Dis ; 15(7): 491, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982043

RESUMEN

IL-17+ γδ T cells (γδ T17) are kick-starters of inflammation due to their strict immunosurveillance of xenobiotics or cellular damages and rapid response to pro-inflammatory stimulators. IL-27 is a well-recognized pleiotropic immune regulator with potent inhibitory effects on type 17 immune responses. However, its actions on γδ T17 mediated inflammation and the underlying mechanisms are less well understood. Here we find that IL-27 inhibits the production of IL-17 from γδ T cells. Mechanistically, IL-27 promotes lipolysis while inhibits lipogenesis, thus reduces the accumulation of lipids and subsequent membrane phospholipids, which leads to mitochondrial deactivation and ensuing reduction of IL-17. More importantly, Il27ra deficient γδ T cells are more pathogenic in an imiquimod-induced murine psoriasis model, while intracutaneous injection of rmIL-27 ameliorates psoriatic inflammation. In summary, this work uncovered the metabolic basis for the immune regulatory activity of IL-27 in restraining γδ T17 mediated inflammation, which provides novel insights into IL-27/IL-27Ra signaling, γδ T17 biology and the pathogenesis of psoriasis.


Asunto(s)
Interleucina-17 , Metabolismo de los Lípidos , Mitocondrias , Psoriasis , Animales , Mitocondrias/metabolismo , Ratones , Psoriasis/patología , Psoriasis/inmunología , Psoriasis/metabolismo , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Inflamación/patología , Inflamación/metabolismo , Piel/patología , Piel/metabolismo , Piel/inmunología , Piel/efectos de los fármacos , Modelos Animales de Enfermedad , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Transducción de Señal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...