Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Animals (Basel) ; 14(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39199852

RESUMEN

Marine mollusks, including oysters, are highly tolerant to high levels of cadmium (Cd), but the molecular mechanisms underlying their molecular response to acute Cd exposure remain unclear. In this study, the Pacific oyster Crassostrea gigas was used as a biological model, exposed to acute Cd stress for 96 h. Transcriptomic analyses of their gills were performed, and metabolomic analyses further validated these results. In our study, a total of 111 differentially expressed metabolites (DEMs) and 2108 differentially expressed genes (DEGs) were identified under acute Cd exposure. Further analyses revealed alterations in key genes and metabolic pathways associated with heavy metal stress response. Cd exposure triggered physiological and metabolic responses in oysters, including enhanced oxidative stress and disturbances in energy metabolism, and these changes revealed the biological response of oysters to acute Cd stress. Moreover, oysters could effectively enhance the tolerance and detoxification ability to acute Cd exposure through activating ABC transporters, enhancing glutathione metabolism and sulfur relay system in gill cells, and regulating energy metabolism. This study reveals the molecular mechanism of acute Cd stress in oysters and explores the molecular mechanism of high tolerance to Cd in oysters by using combined metabolomics and transcriptome analysis.

2.
Sci Rep ; 14(1): 16697, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030254

RESUMEN

This work introduces a quantum subroutine for computing the distance between two patterns and integrates it into two quantum versions of the kNN classifier algorithm: one proposed by Schuld et al. and the other proposed by Quezada et al. Notably, our proposed subroutine is tailored to be memory-efficient, requiring fewer qubits for data encoding, while maintaining the overall complexity for both QkNN versions. This research focuses on comparing the performance of the two quantum kNN algorithms using the original Hamming distance with qubit-encoded features and our proposed subroutine, which computes the distance using amplitude-encoded features. Results obtained from analyzing thirteen different datasets (Iris, Seeds, Raisin, Mine, Cryotherapy, Data Bank Authentication, Caesarian, Wine, Haberman, Transfusion, Immunotherapy, Balance Scale, and Glass) show that both algorithms benefit from the proposed subroutine, achieving at least a 50% reduction in the number of required qubits, while maintaining a similar overall performance. For Shuld's algorithm, the performance improved in Cryotherapy (68.89% accuracy compared to 64.44%) and Balance Scale (85.33% F1 score compared to 78.89%), was worse in Iris (86.0% accuracy compared to 95.33%) and Raisin (77.67% accuracy compared to 81.56%), and remained similar in the remaining nine datasets. While for Quezada's algorithm, the performance improved in Caesarian (68.89% F1 score compared to 58.22%), Haberman (69.94% F1 score compared to 62.31%) and Immunotherapy (76.88% F1 score compared to 69.67%), was worse in Iris (82.67% accuracy compared to 95.33%), Balance Scale (77.97% F1 score compared to 69.21%) and Glass (40.04% F1 score compared to 28.79%), and remained similar in the remaining seven datasets.

3.
Foods ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39063275

RESUMEN

Near-infrared spectroscopy (NIR) has become an essential tool for non-destructive analysis in various fields, including aquaculture. This study presents a pioneering application of portable NIR spectrometers to analyze glycogen content in the gonadal tissues of the Pacific oyster (Crassostrea gigas), marking the first instance of developing quantitative models for glycogen in tetraploid C. gigas. The research also provides a comparative analysis with models for diploid and triploid oysters, underscoring the innovative use of portable NIR technology in aquaculture. Two portable NIR spectrometers were employed: the Micro NIR 1700 (908-1676 nm) and the Micro PHAZIR RX (1624-2460 nm). Near-infrared spectra were acquired from the gonadal tissues of diploid, triploid, and tetraploid C. gigas. Quantitative models for glycogen content were developed and validated using cross-validation methods. Additionally, qualitative models for different ploidies and genders were established. For the Micro NIR 1700, the cross-validation correlation coefficients (Rcv) and cross-validation relative predictive errors (RPDcv) for glycogen were 0.949 and 3.191 for diploids, 0.915 and 2.498 for triploids, and 0.902 and 2.310 for tetraploids. The Micro PHAZIR RX achieved Rcv and RPDcv values of 0.781 and 2.240 for diploids, 0.839 and 2.504 for triploids, and 0.717 and 1.851 for tetraploids. The Micro NIR 1700 demonstrated superior quantitative performance, with RPD values exceeding 2, indicating its effectiveness in predicting glycogen content across different ploidy levels. Qualitative models showed a performance index of 91.6 for diploid and 95 for tetraploid genders using the Micro NIR 1700, while the Micro PHAZIR RX achieved correct identification rates of 99.79% and 100% for diploid and tetraploid genders, respectively. However, differentiation of ploidies was less successful with both instruments. This study's originality lies in establishing the first quantitative models for glycogen content in tetraploid C. gigas using portable NIR spectrometers, highlighting the significant advancements in non-destructive glycogen analysis. The applicability of these findings is substantial for oyster breeding programs focused on enhancing meat quality traits. These models provide a valuable phenotyping tool for selecting oysters with optimal glycogen content, demonstrating the practical utility of portable NIR technology in aquaculture.

4.
Animals (Basel) ; 14(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891754

RESUMEN

Over the years, oysters have faced recurring mass mortality issues during the summer breeding season, with Vibrio infection emerging as a significant contributing factor. Tubules of gill filaments were confirmed to be in the hematopoietic position in Crassostrea gigas, which produce hemocytes with immune defense capabilities. Additionally, the epithelial cells of oyster gills produce immune effectors to defend against pathogens. In light of this, we performed a transcriptome analysis of gill tissues obtained from C. gigas infected with Vibrio alginolyticus for 12 h and 48 h. Through this analysis, we identified 1024 differentially expressed genes (DEGs) at 12 h post-injection and 1079 DEGs at 48 h post-injection. Enrichment analysis of these DEGs revealed a significant association with immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To further investigate the immune response, we constructed a protein-protein interaction (PPI) network using the DEGs enriched in immune-associated KEGG pathways. This network provided insights into the interactions and relationships among these genes, shedding light on the underlying mechanisms of the innate immune defense mechanism in oyster gills. To ensure the accuracy of our findings, we validated 16 key genes using quantitative RT-PCR. Overall, this study represents the first exploration of the innate immune defense mechanism in oyster gills using a PPI network approach. The findings provide valuable insights for future research on oyster pathogen control and the development of oysters with enhanced antimicrobial resistance.

5.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893545

RESUMEN

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids. Therefore, we investigated compositional differences among diploid, triploid, and tetraploid Crassostrea gigas as well as between males and females of diploids and tetraploids. The findings indicated that glycogen, EPA, ∑PUFA, and omega-3 contents were significantly higher in triploid oysters than in diploids or tetraploids; tetraploid oysters had a significantly higher protein content, C14:0, essential amino acid, and flavor-presenting amino acid contents than diploids or triploids. For both diploid and tetraploids, females had significantly higher levels of glutamate, methionine, and phenylalanine than males but lower levels of glycine and alanine. In addition, female oysters had significantly more EPA, DHA, omega-3, and total fatty acids, a result that may be due to the fact that gonadal development in male oysters requires more energy to sustain growth, consumes greater amounts of nutrients, and accumulates more proteins. With these results, important information is provided on the production of C. gigas, as well as on the basis and backing for the genetic breeding of oysters.


Asunto(s)
Aminoácidos , Crassostrea , Diploidia , Ácidos Grasos , Tetraploidía , Triploidía , Animales , Crassostrea/genética , Crassostrea/metabolismo , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Femenino , Masculino
6.
Mar Environ Res ; 194: 106330, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171258

RESUMEN

Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress. However, little is known about the mitochondrial response to heat stress in A. japonicus. In this work, we investigated the morphological and functional changes of A. japonicus mitochondria under three representative temperatures, control temperature (18 °C), aestivation temperature (25 °C) and heat stress temperature (32 °C) temperatures using transmission electron microscopy (TEM) observation of mitochondrial morphology combined with proteomics and metabolomics techniques. The results showed that the mitochondrial morphology of A. japonicus was altered, with decreases in the number of mitochondrial cristae at 25 °C and mitochondrial lysis, fracture, and vacuolization at 32 °C. Proteomic and metabolomic analyses revealed 103 differentially expressed proteins and 161 differential metabolites at 25 °C. At 32 °C, the levels of 214 proteins and 172 metabolites were significantly altered. These proteins and metabolites were involved in the tricarboxylic acid (TCA) cycle, substance transport, membrane potential homeostasis, anti-stress processes, mitochondrial autophagy, and apoptosis. Furthermore, a hypothetical network of proteins and metabolites in A. japonicus mitochondria in response to temperature changes was constructed based on proteomic and metabolomic data. These results suggest that the dynamic regulation of mitochondrial energy metabolism, resistance to oxidative stress, autophagy, apoptosis, and mitochondrial morphology in A. japonicus may play important roles in the response to elevated temperatures. In summary, this study describes the response of A. japonicus mitochondria to temperature changes from the perspectives of morphology, proteins, and metabolites, which provided a better understanding the mechanisms of mitochondrial regulation under environment stress in marine echinoderms.


Asunto(s)
Stichopus , Animales , Stichopus/metabolismo , Temperatura , Proteómica/métodos , Estrés Fisiológico , Mitocondrias
7.
ACS Appl Mater Interfaces ; 15(47): 54386-54396, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972078

RESUMEN

Although supercapacitors with acetonitrile-based electrolytes (AN-based SCs) have realized high-voltage (3.0 V) applications by manufacturers, gas generation at high voltages is a critical issue. Also, the exact origins and evolution mechanisms of gas generation during SC aging at 3.0 V still lack a whole landscape. In this work, floating tests under realistic working conditions are conducted by 22450-type cylindrical cells with an AN-based commercial electrolyte. Comprehensive insights into the origins and evolution mechanisms of gas species at 2.7 and 3.0 V are acquired, which involves multiple side reactions related to the electrode, current collector, and electrolyte. Both experimental evidence and density functional theory calculations demonstrate that the primary reasons for gas generation are residual water and oxygen-containing functional groups, especially hydroxyl and carboxyl. More importantly, additional types of gas (such as CO2, NH3, and alkenes) can only be detected at a higher voltage of 3.0 V rather than 2.7 V after failure, suggesting that these gas species can be regarded as the failure signatures at 3.0 V. This breakthrough analysis will provide fundamental guidance for failure evaluation and designing AN-based SCs with extended lifetime at 3.0 V.

8.
Entropy (Basel) ; 25(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37998191

RESUMEN

In this paper, we employ PCA and t-SNE analyses to gain deeper insights into the behavior of entangled and non-entangled mixing operators within the Quantum Approximate Optimization Algorithm (QAOA) at various depths. We utilize a dataset containing optimized parameters generated for max-cut problems with cyclic and complete configurations. This dataset encompasses the resulting RZ, RX, and RY parameters for QAOA models at different depths (1L, 2L, and 3L) with or without an entanglement stage within the mixing operator. Our findings reveal distinct behaviors when processing the different parameters with PCA and t-SNE. Specifically, most of the entangled QAOA models demonstrate an enhanced capacity to preserve information in the mapping, along with a greater level of correlated information detectable by PCA and t-SNE. Analyzing the overall mapping results, a clear differentiation emerges between entangled and non-entangled models. This distinction is quantified numerically through explained variance in PCA and Kullback-Leibler divergence (post-optimization) in t-SNE. These disparities are also visually evident in the mapping data produced by both methods, with certain entangled QAOA models displaying clustering effects in both visualization techniques.

9.
Animals (Basel) ; 13(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37835745

RESUMEN

Sepia esculenta is an economically important mollusk distributed in the coastal waters of China. Juveniles are more susceptible to stimulation by the external environment than mature individuals. The ocean salinity fluctuates due to environmental changes. However, there is a lack of research on the salinity adaptations of S. esculenta. Therefore, in this study, we investigated the differential expression of genes in S. esculenta larvae after stimulation by low salinity. RNA samples were sequenced and 1039 differentially expressed genes (DEGs) were identified. Then, enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, a protein-protein interaction network (PPI) was constructed, and the functions of key genes in S. esculenta larvae after low-salinity stimulation were explored. We suggest that low salinity leads to an excess proliferation of cells in S. esculenta larvae that, in turn, affects normal physiological activities. The results of this study can aid in the artificial incubation of S. esculenta and reduce the mortality of larvae.

10.
Entropy (Basel) ; 25(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761596

RESUMEN

In this work, we investigate the Shannon entropy of four recently proposed hyperbolic potentials through studying position and momentum entropies. Our analysis reveals that the wave functions of the single-well potentials U0,3 exhibit greater localization compared to the double-well potentials U1,2. This difference in localization arises from the depths of the single- and double-well potentials. Specifically, we observe that the position entropy density shows higher localization for the single-well potentials, while their momentum probability density becomes more delocalized. Conversely, the double-well potentials demonstrate the opposite behavior, with position entropy density being less localized and momentum probability density showing increased localization. Notably, our study also involves examining the Bialynicki-Birula and Mycielski (BBM) inequality, where we find that the Shannon entropies still satisfy this inequality for varying depths u¯. An intriguing observation is that the sum of position and momentum entropies increases with the variable u¯ for potentials U1,2,3, while for U0, the sum decreases with u¯. Additionally, the sum of the cases U0 and U3 almost remains constant within the relative value 0.01 as u¯ increases. Our study provides valuable insights into the Shannon entropy behavior for these hyperbolic potentials, shedding light on their localization characteristics and their relation to the potential depths. Finally, we extend our analysis to the Fisher entropy F¯x and find that it increases with the depth u¯ of the potential wells but F¯p decreases with the depth.

11.
ACS Appl Mater Interfaces ; 15(29): 35280-35289, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37434413

RESUMEN

Ceramic Li1.3Al0.3Ti1.7(PO4)3 (LATP) with high ionic conductivity and stability in ambient atmosphere is considered to be potent as a solid-state electrolyte of solid-state lithium metal batteries (SSLMBs), but its huge interfacial impedance with electrodes and the unwanted Ti4+-mediated reduction reaction caused by the lithium (Li) metal anode greatly limit its application in LMBs. Herein, a composite polymer electrolyte (CPET) was integrated by in situ gelation of dual-permeable 1, 3-dioxolane (DOL) in the tandem framework composed of the commercial cellulose membrane TF4030 and a porous three-dimensional (3D) skeleton-structured LATP. The in situ gelled DOL anchored in the tandem framework ensured nice interfacial contact between the as-prepared CPET and electrodes. The introduction of the porous 3D LATP endowed CPET the increased lithium-ion migration number (tLi+) of 0.70, a wide electrochemical stability window (ESW) of 4.86 V, and a high ionic conductivity of 1.16 × 10-4 S cm-1 at room temperature (RT). Meanwhile, the side reaction of the LATP/Li metal was adequately restrained by inserting TF4030 between the porous LATP and Li anode. Profiting from the superb interfacial stability and the enhanced ionic transport capacity of CPET, Li/Li batteries based on the optimal CPET (CPET2) cycled over 2000 h at 20∼30 °C smoothly. Moreover, solid-state LiFePO4 (LFP)/Li with CPET2 exhibited excellent electrochemical performance with a capacity retention ratio of 72.2% after 400 cycles at 0.5C. This work offers an integrated strategy to guide the fabrication of a highly conductive solid electrolyte and a stable interface design for high-performance SSLMBs.

12.
Entropy (Basel) ; 25(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37509934

RESUMEN

In this study, we investigate the position and momentum Shannon entropy, denoted as Sx and Sp, respectively, in the context of the fractional Schrödinger equation (FSE) for a hyperbolic double well potential (HDWP). We explore various values of the fractional derivative represented by k in our analysis. Our findings reveal intriguing behavior concerning the localization properties of the position entropy density, ρs(x), and the momentum entropy density, ρs(p), for low-lying states. Specifically, as the fractional derivative k decreases, ρs(x) becomes more localized, whereas ρs(p) becomes more delocalized. Moreover, we observe that as the derivative k decreases, the position entropy Sx decreases, while the momentum entropy Sp increases. In particular, the sum of these entropies consistently increases with decreasing fractional derivative k. It is noteworthy that, despite the increase in position Shannon entropy Sx and the decrease in momentum Shannon entropy Sp with an increase in the depth u of the HDWP, the Beckner-Bialynicki-Birula-Mycielski (BBM) inequality relation remains satisfied. Furthermore, we examine the Fisher entropy and its dependence on the depth u of the HDWP and the fractional derivative k. Our results indicate that the Fisher entropy increases as the depth u of the HDWP is increased and the fractional derivative k is decreased.

13.
Dev Comp Immunol ; 143: 104677, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870582

RESUMEN

Triploid oysters have provided the oyster industry with many benefits, such as fast growth rates, meat quality improvement, and increased oyster production and economic benefits, since the first report on triploid oysters was published. The development of polyploid technology has remarkably increased the output of triploid oysters to meet the increasing demand of consumers for Crassostrea gigas in the past decades. At present, research on triploid oyster has mainly focused on breeding and growth, but studies on the immunity of triploid oysters are limited. According to recent reports, Vibrio alginolyticus is a highly virulent strain that can cause disease and death in shellfish, shrimp, as well as serious economic losses. V. alginolyticus may be a reason why oysters die during summer. Therefore, using V. alginolyticus to explore the resistance and immune defense mechanisms of triploid oysters against pathogens presents practical significance. Transcriptome analysis of gene expression was performed in triploid C. gigas at 12 and 48 h after infection with V. alginolyticus, and the respective 2257 and 191 differentially expressed genes (DEGs) were identified. The results of GO and KEGG enrichment analyses showed that multiple significantly enriched GO terms and KEGG signaling pathways are associated with immunity. A protein-protein interaction network was constructed to investigate the interaction relationship of immune-related genes. Finally, we verified the expression situation of 16 key genes using quantitative RT-PCR. This study is the first to use the PPI network in exploring the immune defense mechanism of triploid C. gigas blood to fill the gap in the immune mechanism of triploid oysters and other mollusks, and provide valuable reference for future triploid farming and pathogen prevention and control.


Asunto(s)
Crassostrea , Vibrio , Animales , Crassostrea/genética , Vibrio alginolyticus , Mapas de Interacción de Proteínas , Triploidía , Perfilación de la Expresión Génica
14.
Anal Sci ; 39(1): 87-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36266561

RESUMEN

Differential scanning calorimetry can be used to measure the impurity contents of pure organic substances on the principle of freezing-point depression. Impurity determination by differential scanning calorimetry with a dynamic method, which has the advantages of speediness and convenience, remains to be explored. Here, a series of acetanilide and dibenzothiophene samples with various purities was prepared through zone melting, and the samples were then analyzed by gas chromatography-mass spectrometry. A modified dynamic method, including encapsulating the analyte in a volatile pan through cold welding, remelting the analyte with a low heating rate, calculating the melted fraction considering the area of the tailing under the heat-flow curve, and reducing the error from solid-solution formation, is proposed. Encapsulating with a volatile pan using a proper torque gave an accurate result. Remelting gave a lower impurity content and a more narrow and sooth peak of heat-flow compared with the first melting. The impurity-content results calculated by the modified method were usually higher than those calculated by the ASTM standard method. For acetanilide and dibenzothiophene with impurity contents of less than 0.30%, the modified dynamic method showed good accuracy. The proposed method is applicable to determination of reference materials of organic substances with high purity owing to its accuracy and convenience.


Asunto(s)
Acetanilidas , Calor , Rastreo Diferencial de Calorimetría , Cromatografía de Gases y Espectrometría de Masas
15.
Fish Shellfish Immunol ; 132: 108494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36565999

RESUMEN

As a well-known marine metal element, Cd can significantly affect bivalve mollusk life processes such as growth and development. However, the effects of Cd on the molecular mechanisms of the economically important cephalopod species Sepia esculenta remain unclear. In this study, S. esculenta larval immunity exposed to Cd is explored based on RNA-Seq. The analyses of GO, KEGG, and protein-protein interaction (PPI) network of 1,471 differentially expressed genes (DEGs) reveal that multiple immune processes are affected by exposure such as inflammatory reaction and cell adhesion. Comprehensive analyses of KEGG signaling pathways and the PPI network are first used to explore Cd-exposed S. esculenta larval immunity, revealing the presence of 16 immune-related key and hub genes involved in exposure response. Results of gene and pathway functional analyses increase our understanding of Cd-exposed S. esculenta larval immunity and improve our overall understanding of mollusk immune functions.


Asunto(s)
Sepia , Animales , Sepia/genética , Decapodiformes/genética , Larva/genética , Cadmio/toxicidad , Transcriptoma , Perfilación de la Expresión Génica/veterinaria , Inmunidad/genética , Biología Computacional/métodos
16.
Animals (Basel) ; 14(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38200810

RESUMEN

The primary influencer of aquaculture quality in Amphioctopus fangsiao is pathogen infection. Both lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (Poly I:C) are recognized by the pattern recognition receptor (PRR) within immune cells, a system that frequently serves to emulate pathogen invasion. Hemolymph, which functions as a transport mechanism for immune cells, offers vital transcriptome information when A. fangsiao is exposed to pathogens, thereby contributing to our comprehension of the species' immune biological mechanisms. In this study, we conducted analyses of transcript profiles under the influence of LPS and Poly I:C within a 24 h period. Concurrently, we developed a Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules and genes. Further, we carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the primary modular functions. Co-expression network analyses unveiled a series of immune response processes following pathogen stress, identifying several key modules and hub genes, including PKMYT1 and NAMPT. The invaluable genetic resources provided by our results aid our understanding of the immune response in A. fangsiao hemolymph and will further our exploration of the molecular mechanisms of pathogen infection in mollusks.

17.
Entropy (Basel) ; 24(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36359609

RESUMEN

In this work we have studied the Shannon information entropy for two hyperbolic single-well potentials in the fractional Schrödinger equation (the fractional derivative number (0

18.
Front Immunol ; 13: 963931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211441

RESUMEN

Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.


Asunto(s)
Sepia , Animales , Cadmio/toxicidad , Cobre , Decapodiformes/genética , Perfilación de la Expresión Génica , Inmunidad/genética , Sepia/genética , Transcriptoma
19.
Fish Shellfish Immunol ; 130: 252-260, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122637

RESUMEN

Sepia esculenta is a common economic cephalopod that has received extensive attention due to the tender meat, rich protein content and certain medicinal value thereof. Over the past decade, multiple industries have discharged waste into the ocean in large quantities, thereby significantly increasing the concentration of heavy metals in the ocean. Copper (Cu) is a common heavy metal in the ocean. The increase of Cu content will affect numerous biological processes such as immunity and metabolism of marine organisms. High concentrations of Cu may inhibit S. esculenta growth, development, swimming, and other processes, which would significantly affect its culture. In this research, transcriptome analysis is used to initially explore Cu-exposed S. esculenta larval immune response mechanisms. And compared to control group with normally growing larvae, 2056 differentially expressed genes (DEGs) are identified in experimental group with Cu-exposed larvae. The results of DEGs functional enrichment analyses including GO and KEGG indicate that Cu exposure might promote inflammatory and innate immune responses in cuttlefish larvae. Then, 10 key genes that might regulate larval immunity are identified using a comprehensive analysis that combines protein-protein interaction (PPI) network and KEGG functional enrichment analyses, of which three genes with the highest number of protein interactions or involve in more KEGG signaling pathways are identified as hub genes that might significantly affect larval immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway are used for the first time to explore Cu-exposed S. esculenta larval immune response mechanisms. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide valuable resources for further understanding mollusk immunity.


Asunto(s)
Metales Pesados , Sepia , Animales , Cobre/toxicidad , Decapodiformes/genética , Perfilación de la Expresión Génica/veterinaria , Inmunidad , Larva , Sepia/genética , Transcriptoma
20.
Entropy (Basel) ; 24(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892993

RESUMEN

According to the single-mode approximation applied to two different mo des, each associated with different uniformly accelerating reference frames, we present analytical expression of the Minkowski states for both the ground and first excited states. Applying such an approximation, we study the entanglement property of Bell and Greenberger-Horne-Zeilinger (GHZ) states formed by such states. The corresponding entanglement properties are described by studying negativity and von Neumann entropy. The degree of entanglement will be degraded when the acceleration parameters increase. We find that the greater the number of particles in the entangled system, the more stable the system that is studied by the von Neumann entropy. The present results will be reduced to those in the case of the uniformly accelerating reference frame.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...