Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 280: 116529, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38843745

RESUMEN

The contamination of water by arsenic (As) has emerged as a significant environmental concern due to its well-documented toxicity. Environmentally relevant concentrations of As have been reported to pose a considerable threat to fish. However, previous studies mainly focused on the impacts of As at environmentally relevant concentrations on adult fish, and limited information is available regarding its impacts on fish at early life stage. In this study, zebrafish embryos were employed to evaluate the environmental risks following exposure to different concentrations (0, 25, 50, 75 and 150 µg/L) of pentavalent arsenate (AsV) for 120 hours post fertilization. Our findings indicated that concentrations ≤ 150 µg/L AsV did not exert significant effects on survival or aberration; however, it conspicuously inhibited heart rate of zebrafish larvae. Furthermore, exposure to AsV significantly disrupted mRNA transcription of genes associated with cardiac development, and elongated the distance between the sinus venosus and bulbus arteriosus at 75 µg/L and 150 µg/L treatments. Additionally, AsV exposure enhanced superoxide dismutase (SOD) activity at 50, 75 and 150 µg/L treatments, and increased mRNA transcriptional levels of Cu/ZnSOD and MnSOD at 75 and 150 µg/L treatments. Concurrently, AsV suppressed metallothionein1 (MT1) and MT2 mRNA transcriptions while elevating heat shock protein70 mRNA transcription levels in zebrafish larvae resulting in elevated malondialdehyde (MDA) levels. These findings provide novel insights into the toxic effects exerted by low concentrations of AsV on fish at early life stage, thereby contributing to an exploration into the environmental risks associated with environmentally relevant concentrations.

2.
Environ Monit Assess ; 196(6): 512, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704803

RESUMEN

To gain a comprehensive understanding of the hydrochemical characteristics, controlling factors, and water quality of groundwater in the main stream area of Yishu River (MSYR), a study was conducted using water quality data collected during both the dry and wet seasons. Through statistical analysis, hydrochemical methods, fuzzy comprehensive evaluation, and health risk evaluation modeling, the water chemical characteristics of the main stream area of Yishu River were studied, and the water quality of the area was comprehensively evaluated. The findings indicate that HCO3- and Ca2+ are the predominant anions and cations in the MSYR during the dry and wet seasons, respectively. Moreover, anion concentration in groundwater follows HCO3- > SO42- > NO3- > Cl-, while cations are ranked as Ca2+ > Na+ > Mg2+ > K+. Overall, the groundwater manifests as weakly alkaline and is predominantly classified as hard-fresh water. During the wet season, there is greater groundwater leaching and filtration, with rock and soil materials more readily transferred to groundwater, and the concentrations of main chemical components in groundwater are higher than those during the dry season, and the hydrochemical types are primarily characterized as HCO3-Ca·Mg and SO4·Cl-Ca·Mg types. These results also suggest that the chemical composition of the groundwater in the MSYR is influenced mainly by water-rock interaction. The primary ions originate from the dissolution of silicate rock and carbonate rock minerals, while cation exchange plays a critical role in the hydrogeochemical process. Groundwater in the MSYR is classified mostly as class II water, indicating that it is generally of good quality. However, areas with high levels of class IV and V water are present locally, and NO3- concentration is a crucial factor affecting groundwater quality. In the wet season, more groundwater and stronger mobility lead to greater mobility of NO3- and wider diffusion. Therefore, the risk evaluation model shows that nitrate health risk index is higher in the wet season than it is in the dry season, with children being more vulnerable to health risks than adults. To study groundwater in this area, its hydrochemical characteristics, water quality, and health risk assessment are of great practical significance for ensuring water safety for residents and stable development of social economy.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Ríos/química , China , Estaciones del Año
3.
Eco Environ Health ; 3(2): 183-191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646095

RESUMEN

Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 µg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.

4.
Ecotoxicol Environ Saf ; 277: 116359, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663194

RESUMEN

2,6-Dihalogenated nitrophenols (2,6-DHNPs) are emerging halogenated nitroaromatic pollutants that have been detected in various water environments. However, there is currently limited research available regarding their potential impacts on locomotion behavior and neurotoxicity. Therefore, this study utilized zebrafish embryos to investigate the potential neurotoxic effects of 2,6-DHNPs by examining their impact on the nervous system at a concentration defined as 10% of the median lethal concentration. Our findings demonstrated that exposure to 2,6-DHNPs resulted in a significant 30 % decrease in the total swimming distance of zebrafish larvae, accompanied by notable impairments in motor neuron development and central nervous system. These effects were evidenced by a substantial 25% decrease in axonal growth, as well as disruptions in synapse formation and neuronal differentiation. Additionally, neurotransmitter analysis revealed marked decreases of 40%, 35%, and 30% in dopamine, 5-hydroxytryptamine, and acetylcholine levels respectively, highlighting disturbances in their synthesis, transport, and degradation mechanisms. These results emphasize the considerable neurotoxicity of 2,6-DHNPs at concentrations previously considered safe; thus necessitating a re-evaluation of environmental risk assessments and regulatory standards for such emerging contaminants.


Asunto(s)
Embrión no Mamífero , Contaminantes Químicos del Agua , Pez Cebra , Animales , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Neuronas Motoras/efectos de los fármacos , Natación , Neurotransmisores/metabolismo , Larva/efectos de los fármacos
5.
Environ Pollut ; 346: 123609, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38395134

RESUMEN

3-bromine carbazole (3-BCZ) represents a group of emerging aromatic disinfection byproducts (DBP) detected in drinking water; however, limited information is available regarding its potential cardiotoxicity. To assess its impacts, zebrafish embryos were exposed to 0, 0.06, 0.14, 0.29, 0.58, 1.44 or 2.88 mg/L of 3-BCZ for 120 h post fertilization (hpf). Our results revealed that ≥1.44 mg/L 3-BCZ exposure induced a higher incidence of heart malformation and an elevated pericardial area in zebrafish larvae; it also decreased the number of cardiac muscle cells and thins the walls of the ventricle and atrium while increasing cardiac output and impeding cardiac looping. Furthermore, 3-BCZ exposure also exhibited significant effects on the transcriptional levels of genes related to both cardiac development (nkx2.5, vmhc, gata4, tbx5, tbx2b, bmp4, bmp10, and bmp2b) and cardiac function (cacna1ab, cacna1da, atp2a1l, atp1b2b, atp1a3b, and tnnc1a). Notably, N-acetyl-L-cysteine, a reactive oxygen species scavenger, may alleviate the failure of cardiac looping induced by 3-BCZ but not the associated cardiac dysfunction or malformation; conversely, the aryl hydrocarbon receptor agonist CH131229 can completely eliminate the cardiotoxicity caused by 3-BCZ. This study provides new evidence for potential risks associated with ingesting 3-BCZ as well as revealing underlying mechanisms responsible for its cardiotoxic effects on zebrafish embryos.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Proteínas de Pez Cebra/genética , Corazón , Bromo/farmacología , Cardiotoxicidad , Receptores de Hidrocarburo de Aril/genética , Larva , Desinfección , Embrión no Mamífero
6.
Sci Total Environ ; 896: 165269, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37400033

RESUMEN

Artificial Neural Network (ANN) models are accurate in predicting the levels of disinfection by-products (DBPs) in drinking water. However, these models are not yet practical due to the large number of parameters involved, which should take a significant amount of time and cost to detect. Developing accurate and reliable prediction models of DBPs with fewest parameters is essential in the management of drinking water safety. This study used the adaptive neuro-fuzzy inference system (ANFIS) and radial basis function artificial neural network (RBF-ANN) to predict the levels of trihalomethanes (THMs), the most abundant DBPs in drinking water. Two water quality parameters identified by multiple linear regression (MLR) models were used as model inputs, and the quality of the models was assessed based on criteria such as correlation coefficient (r), mean absolute relative error (MARE), and the percentage of predictions with absolute relative error less than 25% (NE<25%) and over than 40% (NE>40%), etc. The results showed that the ANFIS models had higher correlation coefficients (r = 0.853-0.898) and prediction accuracy (NE<25% = 91%-94%) compared to RBF-ANN models (r = 0.553-0.819; NE<25% = 77%-86%) and traditional MLR models (r = 0.389-0.619; NE<25% = 67%-77%). Conversely, the prediction error, as indicated by MARE and NE>40%, showed the opposite trend: ANFIS models (MARE = 8%-11%; NE>40% = 0-5%) < RBF-ANN models (MARE = 15%-18%; NE>40% = 5%-11%) < MLR models (MARE = 19%-21%; NE>40% = 11%-17%). The present study provided a novel approach for constructing high-quality prediction models of THMs in water supply systems using only two parameters. This method holds promise as a viable alternative for monitoring THMs concentrations in tap water, thereby contributing to the improvement of water quality management strategies.

7.
Environ Toxicol ; 38(3): 694-700, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36454668

RESUMEN

2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), as an emerging disinfection by-product, has been frequently detected in waters, posing potential health risk on public health. Although some studies have pointed out that 2,6-DCBQ exposure can induce cytotoxicity, limited information is available for underlying mechanism for 2,6-DCBQ-induced cytotoxicity. To explore this mechanism, we assessed the levels of reactive oxygen species (ROS), acridine orange (AO) staining, and the mRNA transcriptions of genes (Chk2, Cdk2, Ccna, Ccnb and Ccne) involved in cell-cycle and genes (p53, bax, bcl-2 and caspase 3) involved in apoptosis in zebrafish embryo, after exposed to different concentrations (10, 30, 60, 90 and 120 µg/L) of 2,6-DCBQ for 72 h. Our results indicated that 2,6-DCBQ exposure induced ROS generation and cell apoptosis, and disturbed the mRNA transcription of genes related to cell cycle and apoptosis in zebrafish embryo. Moreover, we also found that 30 ~ 60 µg/L 2,6-DCBQ is the important transition from cell-cycle arrest to cell apoptosis. These results provided novel insight into 2,6-DCBQ-induced cytotoxicity.


Asunto(s)
Apoptosis , Pez Cebra , Animales , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , Apoptosis/genética , Puntos de Control del Ciclo Celular , ARN Mensajero/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-36360680

RESUMEN

2,6-Dichlorobenzoquinone (2,6-DCBQ), as an emerging disinfection by-production, was frequently detected and identified in the drinking water; however, limited information is available for the toxic effect of 2,6-DCBQ on mice. In the present study, adult mice were used to assess the impact of 2,6-DCBQ via measuring the responses of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), the key genes (Heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and glutamate-L-cysteine ligase catalytic subunit (GCLC)) in the Nrf2-keap1 pathway, and lipid peroxidation (malonaldehyde, MDA). Our results clearly indicated that 2,6-DCBQ decreased the activities of SOD and CAT, repressed the transcriptional levels of key genes in Nrf2-keap1 pathway, further caused oxidative damage on mice. These results provided evidence for assessing the threat of 2,6-DCBQ on human.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratones , Humanos , Animales , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Transcripción Genética
9.
Chemosphere ; 303(Pt 3): 135256, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35679981

RESUMEN

Contamination of drinking water by carcinogen arsenic (As) is of worldwide concern as its exposure poses potential threat to human health. As such, it is important to understand the mechanisms associated with As-induced toxicity to humans. The Nrf2/Keap1 signal pathway is one of the most important defense mechanisms in cells to counter oxidative stress; however, limited information is available regarding its role in countering As-induced stress in model animal mouse. In this study, we assessed the responses of Nrf2/keap1 pathway in mice after chronic exposure to As at environmentally-relevant concentrations of 10-200 µg L-1 for 30 days via drinking water. Our results indicate that chronic As exposure had limited effect on mouse growth. However, As induced oxidative stress to mice as indicated by increased content of malondialdehyde (MDA; 52-90%), an index of lipid peroxidation. Further, arsenic exposure reduced the activity of superoxide dismutase (SOD; 14-18%), an indication of reduced anti-oxidative activity. Besides, arsenic exposure increased MnSOD mRNA transcription by 25-66%, and decreased the mRNA transcriptions of Cu/ZnSOD by 72-83% and metallothionein by 16-75%, a cysteine-rich protein involved in metal detoxification. To counter arsenic toxicity, the expression of transcription factor for Nrf2 and Keap1 was increased by 2.8-8.9 and 0.2-8.1 fold in mice. To effectively reduce As-induced oxidative stress, the Nrf2/Keap1 transcription factor upregulated several downstream anti-oxidative genes, including heme oxygenase-1 (0.9-2.5 fold), glutamate-cysteine ligase catalytic subunit (0.6-1.7 fold), and NADH quinone dehydrogenase 1 (2.1-4.8 fold). This study shows the importance of Nrf2/Keap1 signaling pathway and associated anti-oxidative enzymes in countering As-toxicity in mice, possibly having implication for human health.


Asunto(s)
Arsénico , Agua Potable , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Animales , Arsénico/metabolismo , Agua Potable/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
10.
Chemosphere ; 301: 134689, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35469898

RESUMEN

Monohaloacetic acids (mono-HAAs), a class of disinfection by-products widely occurred in drinking water, receives significant attention due to their extremely high toxicity. Many studies on the biological toxicity of mono-HAAs have been reported, yet the toxic effects of mono-HAAs on human renal cells (kidney is one of the target organs for disinfection by-products) has not been involved. Studies on organic precursors for mono-HAAs formation were also very limited due to their lower levels as compared to di-HAAs and tri-HAAs. Based on this, the formation of mono-HAAs after chlorination of some typical source water samples and their relationship with water quality parameters were investigated. Meanwhile, the cytotoxicity of monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), and monoiodoacetic acid (MIAA) were tested using human embryonic kidney cells (HEK-293 T cells). The results showed that the levels of mono-HAAs formed during chlorination of source water samples were between 0.44 and 0.87 µg/L. Formation of MBAA positively (p < 0.05) correlated with bromide ion and dissolved organic carbon, but negatively (p < 0.01) correlated with SUVA254 (specific UV absorbance at 254 nm), while formation of MCAA was only positively (p < 0.05) related with SUVA254. These results suggested that although MCAA and MBAA both belong to the mono-HAAs, the characteristics of their organic precursors differ significantly. MCAA precursors have high aromaticity and are more hydrophobic, yet MBAA precursors have low aromaticity and are more hydrophilic. The half-lethal concentrations (LC50) of MCAA, MBAA, and MIAA on HEK293T cells were 1196-1211 µM, 16.07-18.96 µM, and 6.08-6.17 µM, respectively. An in-depth analysis showed that the cytotoxicity of mono-HAAs on HEK 293 T cells could not be explained by the parameters concerning cellular uptake (e.g., logP and pKa), but the SN2 reaction of C-X bond with cellular molecules (e.g., glyceraldehyde-3-phosphate dehydrogenase, etc) may be the relevant cause for the cytotoxicity of mono-HAAs on HEK 293 T cells.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Ácidos , Desinfectantes/química , Desinfección , Células HEK293 , Halogenación , Humanos , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
11.
Chemosphere ; 286(Pt 1): 131586, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34303907

RESUMEN

Monitoring of disinfection by-products (DBPs) in water supply system is important to ensure safety of drinking water. Yet it is a laborious job. Developing predictive DBPs models using simple and easy parameters is a promising way. Yet current models could not be well applied into practice because of the improper dataset (e.g. not from real tap water) they used or involving the parameters that are difficult to measure or require expensive instruments. In this study, four simple and easy water quality parameters (temperature, pH, UVA254 and Cl2) were used to predict trihalomethane (THMs) occurrence in tap water. Linear/log linear regression models (LRM) and radial basis function artificial neural network (RBF ANN) were adopted to develop the THMs models. 64 observations from tap water samples were used to develop and test models. Results showed that only one or two parameters entered LRMs, and their prediction ability was very limited (testing datasets: N25 = 46-69%, rp = 0.334-0.459). Different from LRM, the prediction accuracy of RBF ANNs developed with pH, temperature, UVA254 and Cl2 can be improved continuously by tweaking the maximum number of neuron (MN) and Gaussian function spread (S) until it reached best. The optimum RBF ANNs of T-THMs, TCM and BDCM were obtained when setting MN = 20, S = 100, 100.1 and 60, respectively, where the N25 and rp values for testing datasets reached 85-92% and 0.813-0.886, respectively. Accurate predictions of THMs by RBF ANNs with these four simple and easy parameters paved an economic and convenient way for THMs monitoring in real water supply system.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfectantes/análisis , Desinfección , Redes Neurales de la Computación , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Abastecimiento de Agua
12.
Chemosphere ; 287(Pt 1): 132120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34523462

RESUMEN

Water environmental pollution caused by spent batteries is a nonignorable environmental issue. In this study, the early life stage of zebrafish was employed to assess the environmental risk of spent batteries after exposure to 0, 1%, 2%, 5% and 10% spent battery extract for 120 h. Our results clearly indicated that spent battery extract can significantly decrease the survival rate, hatching rate and body length and increase heart rate. Moreover, spent battery extract exposure-induced zebrafish larvae generate oxidative stress and inhibit the mRNA transcriptional levels of heat shock protein (HSP70) and metallothionein (MT) genes. These results showed that the spent batteries not only affected the survival and development performance of zebrafish at an early life stage but also caused oxidative stress and interfered with the detoxification of zebrafish. This study provided novel insight into spent battery induced toxicity in the early life stage of fish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Biomarcadores/metabolismo , Embrión no Mamífero/metabolismo , Larva , Estrés Oxidativo , Extractos Vegetales , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
13.
Front Psychol ; 13: 1113655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743651

RESUMEN

On social media, luxury brand managers often use influencers' bragging language as a marketing tool. As modesty is considered a virtue in the Chinese context, Chinese influencers tend to adopt a humblebragging language style. Research has examined the impact of bragging language styles on luxury brands and has found that humblebragging, which appears to be modest, has a negative influence on brand attitudes. From the perspective of social comparison theory, we proposed a dual mediation model of malicious envy and trustworthiness to reveal the internal mechanisms and moderating factors of the negative effects of humblebragging. The results of three experiments indicated that compared with straightforward bragging, humblebragging was more likely to elicit malicious envy and lower levels of trust in an influencer, resulting in negative attitudes toward the luxury brand endorsed. Moreover, this negative effect was stronger when the influencer lacked expertise or had high similarity with consumers. Our findings enrich the antecedents of social media influencer marketing and provide managers with implications for maximizing the effectiveness of influencer marketing by matching influencers with word-of-mouth content.

14.
Ecotoxicol Environ Saf ; 227: 112883, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34653941

RESUMEN

Arsenic (As) in the aquatic environment is a considerable environmental issue, previous studies have reported the toxic effects of low concentrations (≤ 150 µg/L) of As on fish. However, limited information is available regarding the impact of low levels of As on apoptosis. To evaluate this, zebrafish embryos were exposed to different concentrations (0, 25, 50, 75, and 150 µg/L) of As (arsenite [AsIII] and arsenate [AsV]) for 120 h. Our results indicated that low concentrations of AsIII exposure significantly inhibited the survival of zebrafish larvae, and significantly increased the transcription of Caspase-9 and Caspase-3, the ratio of Bax/Bcl-2 transcription, and protein levels of Caspase-3. In contrast, AsV decreased the ratios of Bax/Bcl-2 transcription and protein levels, as well as protein levels of Caspase-3. Our data demonstrated that AsIII and AsV exert different toxic effects, AsIII induced apoptosis via the mitochondrial pathway and the extrinsic pathway, while AsV induced apoptosis only via the mitochondrial pathway.


Asunto(s)
Arsénico , Animales , Apoptosis , Arseniatos/toxicidad , Arsénico/toxicidad , Larva , Pez Cebra
15.
Ecotoxicol Environ Saf ; 220: 112375, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34051662

RESUMEN

129 Shenzhen residents' hair samples were collected and the metal/metalloid concentrations of Hg, As, Pb, Cd, Cr, Cu, Mn, Zn, Fe and Ni were detected. Meanwhile, the relationships between metal/metalloid contents in human hair and gender, age, seafood diet habit, smoking habit, as well as the housing type (dwelling environment) were analyzed. Results showed that the average content of Hg, As, Pb, Cd, Cr, Cu, Mn, Zn, Fe and Ni in human hair of Shenzhen residents was 0.76 ± 0.96, 0.10 ± 0.04, 5.25 ± 4.88, 0.25 ± 0.33, 0.60 ± 0.31, 13.84 ± 3.67, 2.82 ± 2.01, 196.90 ± 145.01, 12.20 ± 5.10 and 0.34 ± 0.32 µg/g, respectively. Compared with other regions at home and abroad, most metal/metalloids in Shenzhen residents were at a moderate level, and the highly toxic elements (i.e. Pb, Cd, As and Hg) didn't exceed the upper limit of normal values in China. Statistical analysis showed that the young male people contained significantly higher (p < 0.05) level of Pb (in age group of 20-30 years old) and Fe (in age group of 20-40 years old) in hair than the female people. Smokers had significantly (p < 0.05) higher level of Cd (0.35 µg/g) but lower level of Zn (101.24 µg/g) than non-smokers (Cd: 0.17 µg/g; Zn: 252.63 µg/g). Hg and Pb contents in hair of Shenzhen people were positively related with the frequencies of seafood consumption and the age, respectively. Moreover, residents lived in private buildings (well decorated house) accumulated significantly higher (p < 0.05) levels of Pb, Cr, Fe and Ni as compared with those lived in public rental house and village house (no decoration or simple decoration), suggesting that decoration material was also an important way for human exposure to heavy metals.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Cabello/química , Metaloides/análisis , Metales Pesados/análisis , Adulto , Factores de Edad , China , Ciudades , Conducta Alimentaria , Femenino , Vivienda , Humanos , Hierro/análisis , Plomo/análisis , Masculino , Persona de Mediana Edad , Alimentos Marinos , Factores Sexuales , Fumadores , Fumar , Adulto Joven
17.
Ecotoxicol Environ Saf ; 211: 111889, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33461014

RESUMEN

The widespread use of cyclophosphamide (CP) in medical treatment had caused ubiquitous contamination in the environment. To data, many studies have been carried out on the toxic effect of CP. However, among these toxic effects of CP, which are the most sensitive remains unclear. Present study aimed to investigate the toxicity of CP on mice and evaluate the sensitivity of physiological-biochemical parameters upon exposure of mice to CP. Results showed that as compared with the control group, CP caused significant reduction in body weight (p < 0.01), spleen coefficient (p < 0.01), leukocyte density (p < 0.01) and alanine transaminase (ALT) in kidney (p < 0.01); However superoxide dismutase (SOD), malondialdehyde (MDA), ALT in liver and creatinine (Cr) in kidney significantly (p < 0.05) increased. Among the suppressed physiological and biochemical parameters, the sensitivity to CP toxicity was generally ranked as body weight > leukocyte density > ALT in kidney > spleen coefficient; while among the stimulated parameters, the sensitivity was ranked as MDA (liver) > Cr (kidney) > ALT (liver). Overall, the most sensitive parameters to CP toxicity may be associated with growth, immune system and the normal function of liver and kidney.


Asunto(s)
Ciclofosfamida/toxicidad , Mutágenos/toxicidad , Alanina Transaminasa/metabolismo , Animales , Antioxidantes/metabolismo , Creatinina , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Ratones , Estrés Oxidativo/fisiología , Superóxido Dismutasa/metabolismo , Pruebas de Toxicidad
18.
Ecotoxicol Environ Saf ; 205: 111331, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32977287

RESUMEN

In China, many studies have been carried out on pesticide residues in human milk, yet all of them are on organochlorine pesticides (OCPs) and mostly focused on large, economically developed cities. In this study, 27 pesticides including OCPs, pyrethroid pesticides (PYRs) and organophosphate pesticides (OPPs) in human milk were investigated in Jinhua, an inland and medium sized city in China. Method based on QuEChERS extraction and gas chromatography-mass spectrometer (GC-MS) determination was adopted to analyze the above pesticide residues. The influencing factors as well as the health risks were also evaluated. Results show that PYRs and OPPs in human milk samples were both undetectable. Regarding OCPs, the detection rate of hexachlorobenzene (HCB), ß-hexachlorocyclohexane (ß-HCH) and p,p'-dichlorodiphenyl-dichloroethylene (p,p'-DDE) were 83.6%, 36.4% and 58.2%, respectively, and their mean value were 29.4, 32.0 and 85.2 ng/g lipid, respectively. p,p'-DDE levels in human milk was significantly (p < 0.05) related to maternal age, but no association was detected between OCPs residues and other factors (living environment, dietary habit, living style, etc.), suggesting that OCPs in human milk in Jinhua were originated from nonspecific source. All estimated daily intake of pesticides (EDIpesticides) by infants were under the guideline suggested by Food and Agriculture Organization (FAO) and China Ministry of Health (CMH). Yet 9% of EDIsHCB and 16% of EDIsHCHs exceeded the guideline recommended by Health Canada. The associations between DDE residues and the delivery way as well as HCBs residues and the birth weight were seemly significant, yet the significance disappeared when consider age or gestational age as a cofounder, indicating that OCPs residue in mother's body in Jinhua has no obvious influence on fetus development and the delivery way.


Asunto(s)
Hidrocarburos Clorados/análisis , Leche Humana/química , Organofosfatos/análisis , Residuos de Plaguicidas/análisis , Adulto , China , Ciudades , Diclorodifenil Dicloroetileno/análisis , Femenino , Hexaclorobenceno/análisis , Hexaclorociclohexano/análisis , Humanos , Lactante , Insecticidas/análisis , Edad Materna , Medición de Riesgo
19.
Ecotoxicol Environ Saf ; 200: 110743, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464441

RESUMEN

Gill, as the organ of fish to contact most directly with xenobiotics, suffered more threat. To evaluate the impact of arsenite (AsIII) on the gill of fish, we measured the antioxidative responses (superoxide dismutase (SOD) and catalase (CAT) activities) and oxidative damage (malondialdehyde (MDA) content), histological changes and mRNA transcriptional responses of zebrafish gill, after exposure to AsIII (0, 10, 50, 100, and 150 µg L-1) solutions for 28 days. We found that AsIII increased the activities of CAT by 46%-87%, decreased the activities of SOD and the contents of MDA by 19% and 21%-32%. Furthermore, CuZnSOD and MnSOD mRNA transcription levels were also inhibited, decreasing by 62%-82% and 70%-77%. Besides, ≥ 100 µg L-1 AsIII also caused histological changes (a loss of mucus and desquamation in the surface of the epithelial cells) on zebrafish gill. These results showed that low concentrations of AsIII influenced biochemical and physiological performances of fish gill, which probably aggravates the toxic effect of AsIII on fish.


Asunto(s)
Arsenitos/toxicidad , Branquias/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Branquias/metabolismo , Branquias/patología , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
20.
Sci Total Environ ; 727: 138412, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32330708

RESUMEN

This review aims to provide an overview of studies on pesticide residues in breast milk in China and the related health risk to mother and infants. Results showed that the investigations of breast milk covered 22 provincial administrative regions of China. Beijing and some densely populated and economically developed areas have most publications. The study frequency was followed the order of DDTs>HCHs>HCB > ∑Drins,∑Chlordane. While the residue levels were ranked as DDTs, HCHs > ∑Drins>HCB > ∑Chlordane. The highest residue levels of DDTs and HCHs in breast milk were found in 1980s (~10,000 ng/g lipid), then experienced a sharp decrease in 1990s (~1000-2000 ng/g lipid). In 2000s and 2010s, DDTs, and HCHs residue still showed a decreasing trend. Spatially, people located in urban area, coastal areas and southern China tend to have higher pesticide residues as compared to rural area, inland area and northern China, respectively. Other factors such as dietary habit, living environment, the maternal age, the parity, body mass index, lactation period, menstruation characteristics as well as hormonal drug intake and infertility treatment will also affect the pesticide residues in breast milk of Chinese people. According to the estimated daily ingestion (EDI) of breast milk, the average health risk for infants were generally exceeded the acceptable level before 2006, while after that, most EDI values were within the standard. Body burden of pesticides in mother can also be evaluated by using the residue data in breast milk, but no relevant guidelines were available. Other knowledge gap included 1) for some provinces with large consumption of pesticides or located in remote and plateau areas, there are few/no studies available; 2) current study on pesticide residues in breast milk in China were only focused on organochlorine pesticides, research on current used pesticides (such as pyrethroids, organophosphorus, carbamate) were necessary in the future.


Asunto(s)
Hidrocarburos Clorados/análisis , Residuos de Plaguicidas/análisis , Beijing , China , DDT/análisis , Femenino , Humanos , Lactante , Leche Humana/química , Embarazo , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA