Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccine ; 41(44): 6572-6578, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37679279

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral disease of livestock which is prevalent across Africa, the Middle East, Asia, and South America where it has a severe economic impact on the agriculture industry. Vaccination with inactivated viral vaccines is used as the main control measure in these endemic regions of the world, however the presence of multiple serotypes, subtypes, and the continual emergence of new, antigenically divergent strains limits its effectiveness. East Africa (EA) has been identified as a region that would particularly benefit from updated FMD vaccines, since those currently in use contain older strains which do not provide good protection against contemporary strains. Four serotypes are currently circulating in EA, necessitating the development of a quadrivalent vaccine containing representative strains of each serotype. A key consideration in the selection of vaccine strains is the stability of the virus particle, since the capsids readily dissociate on exposure to elevated temperatures, but only intact capsids induce protective immunity to FMD. Therefore, with a view to producing a more stable, updated quadrivalent vaccine for EA, we recently screened a panel of foot-and-mouth disease virus (FMDV) isolates from the region to select strains with naturally higher thermostabilities and confirmed their immunogenicity in cattle. Herein we describe the formulation and serological assessment of wild-type and recombinant quadrivalent vaccine candidates comprising these stable strains, and demonstrate that both vaccines generate high neutralising antibody titres against the homologous strains and also to heterologous strains from EA. Importantly, the vaccine passed the criteria set by the AgResults vaccine challenge project and offers good cross-protection against a panel of regional FMDV strains.

2.
Front Vet Sci ; 7: 625049, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33521095

RESUMEN

The contamination of Salmonella Enteritidis in eggs and chicken meat via vertical transmission has become a worldwide public health concern. Biofilm formation by S. Enteritidis further enhances its antibacterial resistance. However, whether genes related to biofilm formation affect the level of vertical transmission is still unclear. Here, S. Enteritidis mutants ΔcsgD, ΔcsgA, ΔbcsA, and ΔadrA were constructed from wild type strain C50041 (WT), and their biofilm-forming ability was determined by Crystal violet staining assay. Then the median lethal dose (LD50) assay was performed to determine the effects of the selected genes on virulence. The bacterial load in eggs produced by infected laying hens via the intraperitoneal pathway or crop gavage was determined for evaluation of the vertical transmission. Crystal violet staining assay revealed that S. Enteritidis mutants ΔcsgD, ΔcsgA, and ΔbcsA, but not ΔadrA, impaired biofilm formation compared with WT strain. Furthermore, the LD50 in SPF chickens showed that both the ΔcsgD and ΔbcsA mutants were less virulent compared with WT strain. Among the intraperitoneally infected laying hens, the WT strain-infected group had the highest percentage of bacteria-positive eggs (24.7%), followed by the ΔadrA group (16%), ΔcsgA group (9.9%), ΔbcsA group (4.5%), and ΔcsgD group (2.1%). Similarly, among the crop gavage chickens, the WT strain group also had the highest infection percentage in eggs (10.4%), followed by the ΔcsgA group (8.5%), ΔadrA group (7.5%), ΔbcsA group (1.9%), and ΔcsgD group (1.0%). Our results indicate that the genes csgD and bcsA help vertical transmission of S. Enteritidis in chickens.

3.
Avian Dis ; 56(1): 134-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22545539

RESUMEN

Salmonella living in biofilms are more resistant to chemical and physical stresses. However, information regarding the regulation of genes involved in biofilm formation for Salmonella enterica serovar Pullorum remains limited. In this study, eight mutants with knockout of genes ompR, rpoS, rfaG, rfbH, rhlE, metE, spiA, or steB from the Salmonella enterica serovar Pullorum strain S6702 were constructed. Phenotypic analysis revealed that all mutants were similar to the wild-type strain in growth rate. Only the ompR mutant showed a complete loss of production ofcurli and biofilm formation. The other mutants showed a modified production of curli and cellulose with less effect related to biofilm formation. The results of animal experiments indicated that the deletion of genes ompR, spiA, rfaG, or metE in wild-type strains contributed to attenuation of virulence in 1-day-old chickens. This study may bring new insights into novel vaccines or therapeutic interventions against Salmonella enterica serovar Pullorum infections.


Asunto(s)
Biopelículas , Pollos , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella enterica/fisiología , Salmonella enterica/patogenicidad , Animales , Eliminación de Gen , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Fenotipo , Salmonella enterica/genética , Salmonella enterica/crecimiento & desarrollo , Virulencia
4.
Bing Du Xue Bao ; 28(1): 7-14, 2012 Jan.
Artículo en Chino | MEDLINE | ID: mdl-22416344

RESUMEN

Samples of chicken, duck, quail, and pigeon were collected from Jiangsu, Anhui, and Hebei in 2009-2011, and sixteen H9N2 subtype isolates of avian influenza virus (AIV) were identified. The eight full-length genes of 16 AIV isolates were amplified by RT-PCR and sequenced. Genome sequence analysis showed that the amino acid motif of cleavage sites in the HA gene was P-S-R/K-S-S-R, which was consistent with the characterization of the LPAIV, and the Leucine (L) at the amino acid position 226 in the HA genes of all isolates indicated the potential of binding with SAalpha, 2-6 receptor. All isolates had a S to N substitution at residue 31 in the M2 gene, which is related to the resistance phenotype of adamantanes. The key molecular features of 16 AIV isolates from different hosts were same. Genome phylogenetic analysis revealed that all 16 H9N2 subtype AIVs originated from F98-like virus as backbone and formed two new genotypes through reassortment with HA gene of Y280-like virus and PB2 and M genes of G1-like virus. Our findings suggest that more attention should be paid to the surveillance of H9N2 influenza virus and its direction of reassortment.


Asunto(s)
Genoma Viral , Subtipo H9N2 del Virus de la Influenza A/genética , Filogenia , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/clasificación , Neuraminidasa/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...