Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci China Life Sci ; 66(2): 313-323, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36271982

RESUMEN

DNMT1 is a DNA methyltransferase that catalyzes and maintains methylation in CpG dinucleotides. It blocks the entrance of DNA into the catalytic pocket via the replication foci targeting sequence (RFTS) domain. Recent studies have shown that an H3-tail-conjugated two-mono-ubiquitin mark (H3Ub2) activates DNMT1 by binding to the RFTS domain. However, the activation mechanism of DNMT1 remains unclear. In this work, we combine various sampling methods of extensive simulations, including conventional molecular dynamics, Gaussian-accelerated molecular dynamics, and coarse-grained molecular dynamics, to elucidate the activation mechanism of DNMT1. Geometric and energy analyses show that binding of H3Ub2 to the RFTS domain of DNMT1 results in the bending of the α4-helix in the RFTS domain at approximately 30°-35°, and the RFTS domain rotates ∼20° anti-clockwise and moves ∼3 Å away from the target recognition domain (TRD). The hydrogen-bonding network at the RFTS-TRD interface is significantly disrupted, implying that the RFTS domain is dissociated from the catalytic core, which contributes to activating the auto-inhibited conformation of DNMT1. These results provide structural and dynamic evidence for the role of H3Ub2 in regulating the catalytic activity of DNMT1.


Asunto(s)
Histonas , Simulación de Dinámica Molecular , Histonas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Ubiquitinación , ADN/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(42): e2203702119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215480

RESUMEN

The full activation process of G protein-coupled receptor (GPCR) plays an important role in cellular signal transduction. However, it remains challenging to simulate the whole process in which the GPCR is recognized and activated by a ligand and then couples to the G protein on a reasonable simulation timescale. Here, we developed a molecular dynamics (MD) approach named supervised (Su) Gaussian accelerated MD (GaMD) by incorporating a tabu-like supervision algorithm into a standard GaMD simulation. By using this Su-GaMD method, from the active and inactive structure of adenosine A1 receptor (A1R), we successfully revealed the full activation mechanism of A1R, including adenosine (Ado)-A1R recognition, preactivation of A1R, and A1R-G protein recognition, in hundreds of nanoseconds of simulations. The binding of Ado to the extracellular side of A1R initiates conformational changes and the preactivation of A1R. In turn, the binding of Gi2 to the intracellular side of A1R causes a decrease in the volume of the extracellular orthosteric site and stabilizes the binding of Ado to A1R. Su-GaMD could be a useful tool to reconstruct or even predict ligand-protein and protein-protein recognition pathways on a short timescale. The intermediate states revealed in this study could provide more detailed complementary structural characterizations to facilitate the drug design of A1R in the future.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Purinérgicos P1 , Adenosina , Proteínas de Unión al GTP/metabolismo , Ligandos , Receptor de Adenosina A1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Termodinámica
3.
J Biol Chem ; 298(7): 102068, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623387

RESUMEN

Fungal infection has long been a chronic and even life-threatening problem for humans. The demand for new antifungal drugs has increased dramatically as fungal infections have continued to increase, yet no new classes of drugs have been approved for nearly 15 years due to either high toxicity or development of drug resistance. Thus, validating new drug targets, especially fungus-specific targets, may facilitate future drug design. Here, we report the crystal structure of yeast Hos3 (ScHos3), a fungus-specific histone deacetylase (HDAC) that plays an important role in the life span of fungi. As acetylation modifications are important to many aspects of fungal infection, the species specificity of Hos3 makes it an ideal target for the development of new antifungal drugs. In this study, we show that ScHos3 forms a functional homodimer in solution, and key residues for dimerization crucial for its deacetylation activity were identified. We used molecular dynamics simulation and structural comparison with mammalian hHDAC6 to determine unique features of the ScHos3 catalytic core. In addition, a small-molecule inhibitor with a preference for ScHos3 was identified through structure-based virtual screening and in vitro enzymatic assays. The structural information and regulatory interferences of ScHos3 reported here provide new insights for the design of selective inhibitors that target fungal HDAC with high efficiency and low toxicity or that have the potential to overcome the prevailing problem of drug resistance in combination therapy with other drugs.


Asunto(s)
Histona Desacetilasas , Proteínas de Saccharomyces cerevisiae , Acetilación , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Humanos , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281237

RESUMEN

SMYD3 is a SET-domain-containing methyltransferase that catalyzes the transfer of methyl groups onto lysine residues of substrate proteins. Methylation of MAP3K2 by SMYD3 has been implicated in Ras-driven tumorigenesis, which makes SMYD3 a potential target for cancer therapy. Of all SMYD family proteins, SMYD3 adopt a closed conformation in a crystal structure. Several studies have suggested that the conformational changes between the open and closed forms may regulate the catalytic activity of SMYD3. In this work, we carried out extensive molecular dynamics simulations on a series of complexes with a total of 21 µs sampling to investigate the conformational changes of SMYD3 and unveil the molecular mechanisms. Based on the C-terminal domain movements, the simulated models could be depicted in three different conformational states: the closed, intermediate and open states. Only in the case that both the methyl donor binding pocket and the target lysine-binding channel had bound species did the simulations show SMYD3 maintaining its conformation in the closed state, indicative of a synergetic effect of the cofactors and target lysine on regulating the conformational change of SMYD3. In addition, we performed analyses in terms of structure and energy to shed light on how the two regions might regulate the C-terminal domain movement. This mechanistic study provided insights into the relationship between the conformational change and the methyltransferase activity of SMYD3. The more complete understanding of the conformational dynamics developed here together with further work may lay a foundation for the rational drug design of SMYD3 inhibitors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , Simulación de Dinámica Molecular , Conformación Proteica
5.
Nucleic Acids Res ; 49(13): 7740-7752, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181713

RESUMEN

The SLX1-SLX4 structure-specific endonuclease complex is involved in processing diverse DNA damage intermediates, including resolution of Holliday junctions, collapse of stalled replication forks and removal of DNA flaps. The nuclease subunit SLX1 is inactive on its own, but become activated upon binding to SLX4 via its conserved C-terminal domain (CCD). Yet, how the SLX1-SLX4 complex recognizes specific DNA structure and chooses cleavage sites remains unknown. Here we show, through a combination of structural, biochemical and computational analyses, that the SAP domain of SLX4 is critical for efficient and accurate processing of 5'-flap DNA. It binds the minor groove of DNA about one turn away from the flap junction, and the 5'-flap is implicated in binding the core domain of SLX1. This binding mode accounts for specific recognition of 5'-flap DNA and specification of cleavage site by the SLX1-SLX4 complex.


Asunto(s)
Endodesoxirribonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Sci Adv ; 7(19)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952527

RESUMEN

The checkpoint kinase ATR [ATM (ataxia-telangiectasia mutated) and rad3-related] is a master regulator of DNA damage response. Yet, how ATR activity is regulated remains to be investigated. We report here that histone demethylase PHF8 (plant homeodomain finger protein 8) plays a key role in ATR activation and replication stress response. Mechanistically, PHF8 interacts with and demethylates TOPBP1 (DNA topoisomerase 2-binding protein 1), an essential allosteric activator of ATR, under unperturbed conditions, but replication stress results in PHF8 phosphorylation and dissociation from TOPBP1. Consequently, hypomethylated TOPBP1 facilitates RAD9 (RADiation sensitive 9) binding and chromatin loading of the TOPBP1-RAD9 complex to fully activate ATR and thus safeguard the genome and protect cells against replication stress. Our study uncovers a demethylation and phosphorylation code that controls the assembly of TOPBP1-scaffolded protein complex, and provides molecular insight into non-histone methylation switch in ATR activation.

7.
RSC Adv ; 11(15): 8718-8729, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423354

RESUMEN

Bats and pangolins are considered to be potential hosts of the new coronavirus SARS-CoV-2, based on its genome similarity to coronaviruses of these species (Bat-CoV-RaTG13 and Pangolin-CoV). The receptor-binding domain (RBD), a functional component of the spike protein, is responsible for binding of SARS-CoV-2 by human ACE2 receptors and is also key to cross-species viral transmission. We performed molecular dynamics (MD) simulations using structures of hACE2 in complex with the RBD of SARS-CoV-2, SARS-CoV, Pangolin-CoV and Bat-CoV-RaTG13, respectively. By analyzing the hydrogen-bonding network at the RBD-hACE2 interface and estimating the binding free energies between RBD and hACE2, we found Pangolin-CoV bound hACE2 in a similar state as did SARS-CoV-2, and both of them bound hACE2 more strongly than did Bat-CoV-RaTG13 or SARS-CoV. We further identified two major adaptation mutations of SARS-CoV-2-RBD, which may have significant roles in regulating the recognition and binding between RBD and hACE2. Our results add to existing evidence that Pangolins have the potential to act as an intermediate host for SARS-CoV-2, and provide guidance for future design of antiviral drugs and vaccines.

8.
Biochem J ; 477(13): 2439-2449, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32538427

RESUMEN

The acetohydroxyacid synthase (AHAS) holoenzyme catalyzes the first step of branch-chain amino acid biosynthesis and is essential for plants and bacteria. It consists of a regulatory subunit (RSU) and a catalytic subunit (CSU). The allosteric mechanism of the AHAS holoenzyme has remained elusive for decades. Here, we determined the crystal structure of the AHAS holoenzyme, revealing the association between the RSU and CSU in an A2B2 mode. Structural analysis in combination with mutational studies demonstrated that the RSU dimer forms extensive interactions with the CSU dimer, in which a conserved salt bridge between R32 and D120 may act as a trigger to open the activation loop of the CSU, resulting in the activation of the CSU by the RSU. Our study reveals the activation mechanism of the AHAS holoenzyme.


Asunto(s)
Acetolactato Sintasa/química , Holoenzimas/química , Regulación Alostérica/fisiología , Cristalografía
9.
ACS Catal ; 10: 5871-5890, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391184

RESUMEN

Coronavirus 3C-like protease (3CLPro) is a highly conserved cysteine protease employing a catalytic dyad for its functions. 3CLPro is essential to the viral life cycle and, therefore, is an attractive target for developing antiviral agents. However, the detailed catalytic mechanism of coronavirus 3CLPro remains largely unknown. We took an integrated approach of employing X-ray crystallography, mutational studies, enzyme kinetics study, and inhibitors to gain insights into the mechanism. Such experimental work is supplemented by computational studies, including the prereaction state analysis, the ab initio calculation of the critical catalytic step, and the molecular dynamic simulation of the wild-type and mutant enzymes. Taken together, such studies allowed us to identify a residue pair (Glu-His) and a conserved His as critical for binding; a conserved GSCGS motif as important for the start of catalysis, a partial negative charge cluster (PNCC) formed by Arg-Tyr-Asp as essential for catalysis, and a conserved water molecule mediating the remote interaction between PNCC and catalytic dyad. The data collected and our insights into the detailed mechanism have allowed us to achieve a good understanding of the difference in catalytic efficiency between 3CLPro from SARS and MERS, conduct mutational studies to improve the catalytic activity by 8-fold, optimize existing inhibitors to improve the potency by 4-fold, and identify a potential allosteric site for inhibitor design. All such results reinforce each other to support the overall catalytic mechanism proposed herein.

10.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32075933

RESUMEN

African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.


Asunto(s)
Virus de la Fiebre Porcina Africana/enzimología , Cisteína Endopeptidasas/química , Proteínas Virales/química , Fiebre Porcina Africana/virología , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Simulación de Dinámica Molecular , Poliproteínas/química , Conformación Proteica , Dominios Proteicos , Proteína SUMO-1 , Alineación de Secuencia , Sus scrofa , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Nat Commun ; 10(1): 5597, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811136

RESUMEN

The inherent specificity of DNA sequence hybridization has been extensively exploited to develop bioengineering applications. Nevertheless, the structural potential of DNA has been far less explored for creating non-canonical DNA-based reactions. Here we develop a DNA origami-enabled highly localized metallization reaction for intrinsic metallization patterning with 10-nm resolution. Both theoretical and experimental studies reveal that low-valence metal ions (Cu2+ and Ag+) strongly coordinate with DNA bases in protruding clustered DNA (pcDNA) prescribed on two-dimensional DNA origami, which results in effective attraction within flexible pcDNA strands for site-specific pcDNA condensation. We find that the metallization reactions occur selectively on prescribed sites while not on origami substrates. This strategy is generically applicable for free-style metal painting of alphabet letters, digits and geometric shapes on all-DNA substrates with near-unity efficiency. We have further fabricated single- and double-layer nanoscale printed circuit board (nano-PCB) mimics, shedding light on bio-inspired fabrication for nanoelectronic and nanophotonic applications.


Asunto(s)
ADN/química , Nanopartículas del Metal/química , Metales/química , Nanoestructuras/química , Cobre/química , ADN/ultraestructura , Oro/química , Microscopía de Fuerza Atómica , Microscopía Electrónica , Modelos Teóricos , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Conformación de Ácido Nucleico , Espectroscopía de Fotoelectrones
12.
ACS Omega ; 4(22): 19573-19581, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31788587

RESUMEN

SMYD3, a SET and MYND domain containing lysine methyltransferase, catalyzes the transfer of the methyl group from a methyl donor onto the Nε group of a lysine residue in the substrate protein. Methylation of MAP3 kinase kinase (MAP3K2) by SMYD3 has been implicated in Ras-driven tumorigenesis. The crystal structure of SMYD3 in complex with MAP3K2 peptide reveals a shallow hydrophobic pocket (P-2), which accommodates the binding of a phenylalanine residue at the -2 position of the substrate (F258) is a crucial determinant of substrate specificity of SMYD3. To better understand the substrate preference of SMYD3 at the -2 position, molecular dynamics (MD) simulations and the MM/GBSA method were performed on the crystal structure of SMYD3-MAP3K2 complex (PDB: 5EX0) after substitution of F258 residue of MAP3K2 to each of the other 19 natural residues, respectively. Binding free energy calculations reveal that the P-2 pocket prefers an aromatic hydrophobic group and none of the substitutions behave better than the wild-type phenylalanine residue does. Furthermore, we investigated the structure-activity relationships (SAR) of a series of non-natural phenylalanine derivative substitutions at the -2 position and found that quite a few modifications on the sidechain of F258 residue could strengthen its binding to the P-2 pocket of SMYD3. These explorations provide insights into developing novel SMYD3 inhibitors with high potency and high selectivity against MAP3K2 and cancer.

13.
Angew Chem Int Ed Engl ; 57(19): 5418-5422, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29528530

RESUMEN

Reconfiguration of membrane protein channels for gated transport is highly regulated under physiological conditions. However, a mechanistic understanding of such channels remains challenging owing to the difficulty in probing subtle gating-associated structural changes. Herein, we show that charge neutralization can drive the shape reconfiguration of a biomimetic 6-helix bundle DNA nanotube (6HB). Specifically, 6HB adopts a compact state when its charge is neutralized by Mg2+ ; whereas Na+ switches it to the expanded state, as revealed by MD simulations, small-angle X-ray scattering (SAXS), and FRET characterization. Furthermore, partial neutralization of the DNA backbone charges by chemical modification renders 6HB compact and insensitive to ions, suggesting an interplay between electrostatic and hydrophobic forces in the channels. This system provides a platform for understanding the structure-function relationship of biological channels and designing rules for the shape control of DNA nanostructures in biomedical applications.


Asunto(s)
ADN/química , Nanotubos/química , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
J Mater Chem B ; 6(26): 4368-4379, 2018 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254512

RESUMEN

Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine active in the bodily immune response and serious inflammatory diseases. Traditional ligands targeting TNF-α focus on antibodies and receptors, which always associate with low efficacy and specificity. In the present study, two peptide ligands (T1: Ac-RKEM-NH2 and T2: Ac-RHCLS-NH2) were designed by computer simulation technology considering the weak interactions between TNF-α and its receptor TNFR1. Calculations of binding free energy (BFE) were made by the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method between T1 or T2 and TNF-α (-22.68 and -14.23 kcal mol-1, respectively). To assess the affinity levels, short peptide ligands were fixed on polyvinyl alcohol (PVA) microspheres; adsorption tests showed a stronger affinity of both PVA-T1 and PVA-T2 to TNF-α in PBS buffer than PVA microspheres (79.20 ± 1.32 and 74.27 ± 1.10 vs. 39.03 ± 1.25 pg mg-1, respectively). Moreover, PVA-T1 (74.8%, 17.60 ± 2.98 pg mg-1) and PVA-T2 (63.2%, 15.30 ± 4.81 pg mg-1) exhibit significantly enhanced TNF-α adsorption from the plasma of rats with sepsis to blank PVA and commercial XAD-7 resin. In conclusion, our results show that T1 designed by computer-aided molecular design (CAMD) exhibits a stronger affinity to TNF-α and it can significantly enhance PVA microsphere adsorption efficiency of TNF-α in plasma.

15.
Sci Rep ; 7: 46733, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28429756

RESUMEN

Numerous crystal structures of HIV gp120 have been reported, alone or with receptor CD4 and cognate antibodies; however, no sole gp120/CD4 complex without stabilization by an antibody is available. Here, we report a crystal structure of the gp120/CD4 complex without the aid of an antibody from HIV-1 CRF07_BC, a strain circulating in China. Interestingly, in addition to the canonical binding surface, a second interacting interface was identified. A mutagenesis study on critical residues revealed that the stability of this interface is important for the efficiency of Env-mediated membrane fusion. Furthermore, we found that a broad neutralizing antibody, ibalizumab, which targets CD4 in the absence of gp120, occupies the same binding surface as the second interface identified here on gp120. Therefore, we identified the possibility of the involvement of a second gp120-CD4 interaction interface during viral entry, and also provided a reasonable explanation for the broad activity of neutralizing antibody ibalizumab.


Asunto(s)
Antígenos CD4/química , Proteína gp120 de Envoltorio del VIH/química , VIH-1/metabolismo , Dominios Proteicos , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Antígenos CD4/metabolismo , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Cristalografía por Rayos X , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/genética , Células HeLa , Humanos , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
16.
J Mol Graph Model ; 74: 203-214, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28445832

RESUMEN

The Zika virus has drawn worldwide attention because of the epidemic diseases it causes. It is a flavivirus that has an icosahedral protein shell constituted by an envelope glycoprotein (E-protein) and membrane protein (M-protein) in the mature virion. The multistep process of membrane fusion to infect the host cell is pH-induced. To understand the mechanism of the conformational changes in the (E-M)2 protein homodimer embedded in the membrane, two 200-ns accelerated dynamic simulations were performed under different pH conditions. The low pH condition weakens the interactions and correlations in both E-protein monomers and in the E-M heterodimer. The highly conserved residues, His249, His288, His323 and His446, are protonated under low pH conditions and play key roles in driving the fusion process. The analysis and discussion in this study may provide some insight into the molecular mechanism of Zika virus infection.


Asunto(s)
Histidina/química , Proteínas del Envoltorio Viral/química , Virus Zika/química , Secuencia de Aminoácidos , Secuencia Conservada , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Dominios Proteicos , Estructura Cuaternaria de Proteína , Termodinámica
17.
J Mol Graph Model ; 74: 16-23, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28340381

RESUMEN

DNA nanostructures can undergo large structural fluctuations and deviate from their intended configurations. In this work, two model DNA nanostructures (i.e., Nan and Kai) were designed based on the shape of the two Chinese characters of the name of Nankai University, and additional single-stranded DNA fragments were added to interact with graphene. During four 50-ns molecular dynamic simulations in aqueous solution, the DNA nanostructures adsorbed onto graphene demonstrated more stable conformations with lower root mean square deviations and smaller coordinate changes in the z-axis direction than the DNA nanostructures that were not adsorbed onto graphene. The interaction analyses and energetic calculations show that π-π interactions between single-stranded DNA and graphene are necessary for adsorption of the DNA nanostructures. Overall, this work examined the interactions between DNA and graphene at a large spatial scale with the hope that it provides a new strategy to stabilize DNA nanostructures.


Asunto(s)
ADN/química , Grafito/química , Adsorción , Sitios de Unión , Simulación de Dinámica Molecular , Nanoestructuras , Conformación de Ácido Nucleico , Soluciones , Termodinámica
18.
Anal Bioanal Chem ; 409(4): 1145-1157, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27796460

RESUMEN

Tropane alkaloids (TAs), rich in the plant of Physochlaina infundibularis Kuang, which is named Huashanshen (HSS) in China, showed good effects on types of spasms. However, no data were collected to explore the relationship between the specificity for muscarinic receptor subtypes and the structures of these TAs. To address this issue, an extracted ion chromatogram (EIC) strategy using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) based on the fragmentation behavior of the TA standards was established to rapidly capture the varied TAs from HSS. Based on the provided structural information of diagnostic ions or neutral loss, 29 TAs were efficiently profiled, especially some trace ingredients. In additional, via virtual validation combined with molecular dynamic simulation, approximately a dozen alkaloids were found with high selectivity for muscarinic receptors. In additional, N-acetyl convolicine was chosen for selectivity evaluation of M2 or M3 receptors through the use of a dual-luciferase reporter assay system at the cellular level and an ACh-induced constricted strip test in vitro. After summarizing the active fragments and the structure-activity relationship (SAR) information, a new modified TA that takes advantage of both the high affinity and high selectivity for M3 receptors was proposed and evaluated successfully. This study provided an effective approach for the discovery and design of natural products based on highly selective drugs by UPLC-Q/TOF-MS coupled with virtual calculation and biological evaluation. Graphical Abstract Active fragments-guided strategy for selective inhibitors from HSS.


Asunto(s)
Alcaloides/química , Cromatografía Líquida de Alta Presión/métodos , Diseño de Fármacos , Descubrimiento de Drogas , Espectrometría de Masas en Tándem/métodos , Tropanos/química , Acetilcolina/farmacología , Animales , Cobayas , Simulación de Dinámica Molecular , Músculo Liso/efectos de los fármacos , Estándares de Referencia
19.
Phys Chem Chem Phys ; 18(18): 12642-50, 2016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27094704

RESUMEN

The human glucagon receptor (GCGR) is a class B G-protein-coupled receptor (GPCR). The GCGR can be activated by glucagon and regulates the release of glucose. The GCGR has been proposed to be an important drug target for type 2 diabetes. Based on the structural model of a full-length glucagon-bound GCGR (glu-GCGR), we performed accelerated molecular dynamics (aMD) simulations, potential of mean force (PMF) calculations, cross-correlation analysis and community network analysis to study the activation mechanism and the conformational dynamics during the activation process. The PMF map depicts three different conformational states of the GCGR: the inactive, intermediate and active states. The activation of the GCGR is characterized by the outward movement of the intracellular side of helix VI. In the active state of the GCGR, the Arg173(2.46)-Ser350(6.41) and Glu245(3.50)-Thr351(6.42) hydrogen bonds break, and the χ1 rotamer of Phe322(5.54) changes from perpendicular to parallel to helix VI. The binding of the agonist glucagon decreases the correlated motions of the extracellular loops (ELCs) and the helices around the glucagon-binding site. During the activation of the GCGR, the connections between the intracellular sides of helices become weaker, and the connections between glucagon and ECLs and the extracellular sides of helices become stronger. These facilitate G-protein coupling on the intracellular side and glucagon binding on the extracellular side, and stabilize the GCGR in the active state. We expect that this study can provide useful information on the activation mechanism of the GCGR and facilitate the future design of GCGR inhibitors.


Asunto(s)
Glucagón/metabolismo , Receptores de Glucagón/metabolismo , Dominio Catalítico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Receptores de Glucagón/química
20.
Sci Rep ; 5: 13435, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26306712

RESUMEN

Regulating and ameliorating enzyme expression and activity greatly affects the performance of a given synthetic pathway. In this study, a new synthetic pathway for cis, cis-muconic acid (ccMA) production was reconstructed without exogenous induction by regulating the constitutive expression of the important enzyme catechol 1,2-dioxygenase (CatA). Next, new CatAs with significantly improved activities were developed to enhance ccMA production using structure-assisted protein design. Nine mutations were designed, simulated and constructed based on the analysis of the CatA crystal structure. These results showed that mutations at Gly72, Leu73 and/or Pro76 in CatA could improve enzyme activity, and the activity of the most effective mutant was 10-fold greater than that of the wild-type CatA from Acinetobacter sp. ADP1. The most productive synthetic pathway with a mutated CatA increased the titer of ccMA by more than 25%. Molecular dynamic simulation results showed that enlarging the entrance of the substrate-binding pocket in the mutants contributed to their increased enzyme activities and thus improved the performance of the synthetic pathway.


Asunto(s)
Catecol 1,2-Dioxigenasa/metabolismo , Escherichia coli/fisiología , Mejoramiento Genético/métodos , Transducción de Señal/fisiología , Ácido Sórbico/análogos & derivados , Catecol 1,2-Dioxigenasa/genética , Ingeniería Metabólica/métodos , Ingeniería de Proteínas/métodos , Ácido Sórbico/aislamiento & purificación , Ácido Sórbico/metabolismo , Biología Sintética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...