RESUMEN
As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia-of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (P app > 10 × 10-6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose-response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.
RESUMEN
HCV patients are usually under substantial oxidative stress because of viral infection. A total of 177 patients with HCV infection and 198 age- and sex-matched healthy controls were enrolled in this study. We evaluated the urinary levels of 8-oxo-7, 8-dihydro-2'deoxyguanosine (8-oxodGuo) and 8-oxo-7, 8-dihydroguanosine (8-oxoGuo) in patients with HCV infection and explored the factors affecting the urinary 8-oxodGuo or 8-oxoGuo levels. Biomarkers of liver function, cancer, and inflammation were determined. Nonparametric correlations were used to evaluate the correlation between 8-oxoGuo or 8-oxodGuo and various laboratory biochemical indicators. Results showed that the levels of urinary 8-oxoGuo both in male and female patients with HCV infection were significantly higher than those in healthy controls (both p < 0.0001), while the urinary 8-oxodGuo levels only in male patients with HCV infection were significantly higher than those in healthy controls (p < 0.01). Urinary 8-oxoGuo was significantly associated with the white blood cell count, C-reactive protein level, and 8-oxodGuo level (p = 0.016, p = 0.003, and p = 0.000, respectively). Urinary 8-oxodGuo was significantly associated with the white blood cell count and 8-oxoGuo level (p = 0.018 and p = 0.000, respectively). A regression equation of urinary 8-oxoGuo or 8-oxodGuo was also established using the biomarkers in plasma. The results suggested that patients with a high C-reactive protein level are likely to have high urinary 8-oxoGuo levels as well, which may be useful for assessing the level of inflammation and oxidative stress in HCV patients.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1961272 .
Asunto(s)
Guanosina/análogos & derivados , Hepatitis C/orina , Adulto , Biomarcadores/orina , Femenino , Guanosina/orina , Humanos , Masculino , Persona de Mediana Edad , Estrés OxidativoRESUMEN
As a serine hydrolase, monoacylglycerol lipase (MAGL) is principally responsible for the metabolism of 2-arachidonoylglycerol (2-AG) in the central nervous system (CNS), leading to the formation of arachidonic acid (AA). Dysfunction of MAGL has been associated with multiple CNS disorders and symptoms, including neuroinflammation, cognitive impairment, epileptogenesis, nociception and neurodegenerative diseases. Inhibition of MAGL provides a promising therapeutic direction for the treatment of these conditions, and a MAGL positron emission tomography (PET) probe would greatly facilitate preclinical and clinical development of MAGL inhibitors. Herein, we design and synthesize a small library of fluoropyridyl-containing MAGL inhibitor candidates. Pharmacological evaluation of these candidates by activity-based protein profiling identified 14 as a lead compound, which was then radiolabeled with fluorine-18 via a facile SNAr reaction to form 2-[18F]fluoropyridine scaffold. Good blood-brain barrier permeability and high in vivo specific binding was demonstrated for radioligand [18F]14 (also named as [18F]MAGL-1902). This work may serve as a roadmap for clinical translation and further design of potent 18F-labeled MAGL PET tracers.
RESUMEN
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Descubrimiento de Drogas , Inhibidores de Fosfodiesterasa/química , Tomografía de Emisión de Positrones , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Animales , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/metabolismo , Inhibidores de Fosfodiesterasa/uso terapéutico , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Radiofármacos/química , Radiofármacos/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
N-methyl-D-aspartate receptors (NMDARs) play critical roles in the physiological function of the mammalian central nervous system (CNS), including learning, memory, and synaptic plasticity, through modulating excitatory neurotransmission. Attributed to etiopathology of various CNS disorders and neurodegenerative diseases, GluN2B is one of the most well-studied subtypes in preclinical and clinical studies on NMDARs. Herein, we report the synthesis and preclinical evaluation of two 11C-labeled GluN2B-selective negative allosteric modulators (NAMs) containing N,N-dimethyl-2-(1H-pyrrolo[3,2-b]pyridin-1-yl)acetamides for positron emission tomography (PET) imaging. Two PET ligands, namely [11C]31 and [11C]37 (also called N2B-1810 and N2B-1903, respectively) were labeled with [11C]CH3I in good radiochemical yields (decay-corrected 28% and 32% relative to starting [11C]CO2, respectively), high radiochemical purity (>99%) and high molar activity (>74 GBq/µmol). In particular, PET ligand [11C]31 demonstrated moderate specific binding to GluN2B subtype by in vitro autoradiography studies. However, because in vivo PET imaging studies showed limited brain uptake of [11C]31 (up to 0.5 SUV), further medicinal chemistry and ADME optimization are necessary for this chemotype attributed to low binding specificity and rapid metabolism in vivo.
Asunto(s)
Acetamidas/metabolismo , Pirimidinas/metabolismo , Pirroles/metabolismo , Radiofármacos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Acetamidas/síntesis química , Acetamidas/farmacocinética , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Femenino , Ligandos , Masculino , Metilación , Ratones Endogámicos ICR , Tomografía de Emisión de Positrones , Pirimidinas/síntesis química , Pirimidinas/farmacocinética , Pirroles/síntesis química , Pirroles/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidoresRESUMEN
The α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) belong to the family of ionotropic transmembrane receptors for glutamate (iGluRs) that are implicated in the pathology of neurological disorders and neurodegenerative diseases. Inspired by a recently developed positive allosteric modulator of AMPARs, 4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-benzo[ e ][1,2,4]thiadiazine 1,1-dioxide (16; EC50 = 2.0 nM), we designed a new synthetic route for N-protected phenolic precursor 13 and efficiently radiolabeled a PET ligand [11C]AMPA-1905 ([11C]16) using a modified one-pot two-step strategy in high radiochemical yield and high molar activity. Preliminary in vivo evaluation was carried out to investigate the suitability of [11C]16 as a potential PET probe for AMPAR imaging.
RESUMEN
Cholesterol 24-hydroxylase, also known as CYP46A1 (EC 1.14.13.98), is a monooxygenase and a member of the cytochrome P450 family. CYP46A1 is specifically expressed in the brain where it controls cholesterol elimination by producing 24S-hydroxylcholesterol (24-HC) as the major metabolite. Modulation of CYP46A1 activity may affect Aß deposition and p-tau accumulation by changing 24-HC formation, which thereafter serves as potential therapeutic pathway for Alzheimer's disease. In this work, we showcase the efficient synthesis and preliminary pharmacokinetic evaluation of a novel cholesterol 24-hydroxylase inhibitor 1 for use in positron emission tomography.
Asunto(s)
Dióxido de Carbono/química , Isótopos de Carbono , Colesterol 24-Hidroxilasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Radiofármacos/síntesis química , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Ratones , Estructura Molecular , Neuroimagen , Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución TisularRESUMEN
The reaction of o-nitroiodobenzene and mCPBA in acetic acid was found to afford a novel hypervalent iodine compound, in the structure of which both iodine(iii) and iodine(v) moieties coexist. The nitro groups at the ortho phenyl positions were found to be crucial in stabilizing this uncommon structure. This novel hypervalent iodine(iii/v) oxidant is proved to be effective in realizing the synthesis of 2-unsubstitued 2H-azirines via intramolecular oxidative azirination, which could not be efficiently achieved by the existing known hypervalent iodine reagents.
RESUMEN
The reaction of enamine compounds with the Togni reagent in the presence of CuI afforded ß-trifluoromethylated enamine intermediates, which were converted directly to biologically interesting trifluoromethylated 2H-azirines by an iodosobenzene (PhIO)-mediated intramolecular azirination in a one-pot process.
RESUMEN
Various chromeno[2,3-b]indol-11(6H)-ones were conveniently constructed via phenyliodine(III) diacetate (PIDA)-mediated intramolecular oxidative annulation. This method, while realizing a direct oxidative CN bond formation between an aromatic ring and a pendent free-NH2 moiety, features a metal-free protocol, mild reaction conditions, simple workup, and the ready availability of the starting substrates.
Asunto(s)
Benzopiranos/química , Benzopiranos/síntesis química , Indoles/química , Indoles/síntesis química , Yodobencenos/química , Rodio/química , Catálisis , Estructura Molecular , Oxidación-ReducciónRESUMEN
OBJECTIVE: In this study, we discuss the predictive value of different content of HBsAg in different stages of neotal venous blood on failure of blocking mother to infant transmission of HBV. METHODS: 150 infants born of chronically HBV infected mothers who were positive of both HBsAg and HBeAg and who also had a HBV DNA virus load above 10(5) copies/ml were enrolled. These infants were given hepatitis B virus immune globin (HBIG) 200 IU immediately after birth and were given hepatitis B vaccine 10 or 20 microg at brith, 1 month and 6 months after birth. HBV serological index of these infants were test at birth, 1 month and 7 months after birth respectively. Different content of HBsAg in different stages of neonatal venus blood were analyzed to predict the failure of blocking mother to infant transmission of HBV. RESULTS: 11 infants failed in blocking of HBV mother to infant transmission. The positive rate of HBsAg at birth, 1 month and 7 months after birth were 41.26%, 10.49% and 7.69% respectively, and were 97.90%, 65.73% and 13.29% of HBeAg. The positive predictive value of HBsAg > or = 0.05 and HBsAg > or = 1 IU/ml at birth were 18.64% and 70% respectively, and were 73.33% and 100% one month after birth. CONCLUSIONS: Infants with HBsAg > or = 1 IU/ml at birth should be suspicious of failure on blocking HBV mother-to-infant transmission and it should be more credible if the infant has HBsAg > or = 1 IU/ml one month after birth. How to improve the blocking rate of neonates who were positive of HBsAg at birth and one month after birth should be the focus of our future research.