Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Med ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060660

RESUMEN

Serum neutralizing antibodies (nAbs) induced by vaccination have been linked to protection against symptomatic and severe coronavirus disease 2019. However, much less is known about the efficacy of nAbs in preventing the acquisition of infection, especially in the context of natural immunity and against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune-escape variants. Here we conducted mediation analysis to assess serum nAbs induced by prior SARS-CoV-2 infections as potential correlates of protection against Delta and Omicron infections, in rural and urban household cohorts in South Africa. We find that, in the Delta wave, D614G nAbs mediate 37% (95% confidence interval: 34-40%) of the total protection against infection conferred by prior exposure to SARS-CoV-2, and that protection decreases with waning immunity. In contrast, Omicron BA.1 nAbs mediate 11% (95% confidence interval: 9-12%) of the total protection against Omicron BA.1 or BA.2 infections, due to Omicron's neutralization escape. These findings underscore that correlates of protection mediated through nAbs are variant specific, and that boosting of nAbs against circulating variants might restore or confer immune protection lost due to nAb waning and/or immune escape. However, the majority of immune protection against SARS-CoV-2 conferred by natural infection cannot be fully explained by serum nAbs alone. Measuring these and other immune markers including T cell responses, both in the serum and in other compartments such as the nasal mucosa, may be required to comprehensively understand and predict immune protection against SARS-CoV-2.

2.
Infect Dis Poverty ; 13(1): 21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38419040

RESUMEN

BACKGROUND: The 2022-2023 mpox (monkeypox) outbreak has spread rapidly across multiple countries in the non-endemic region, mainly among men who have sex with men (MSM). In this study, we aimed to evaluate mpox's importation risk, border screening effectiveness and the risk of local outbreak in Chinese mainland. METHODS: We estimated the risk of mpox importation in Chinese mainland from April 14 to September 11, 2022 using the number of reported mpox cases during this multi-country outbreak from Global.health and the international air-travel data from Official Aviation Guide. We constructed a probabilistic model to simulate the effectiveness of a border screening scenario during the mpox outbreak and a hypothetical scenario with less stringent quarantine requirement. And we further evaluated the mpox outbreak potential given that undetected mpox infections were introduced into men who have sex with men, considering different transmissibility, population immunity and population activity. RESULTS: We found that the reduced international air-travel volume and stringent border entry policy decreased about 94% and 69% mpox importations respectively. Under the quarantine policy, 15-19% of imported infections would remain undetected. Once a case of mpox is introduced into active MSM population with almost no population immunity, the risk of triggering local transmission is estimated at 42%, and would rise to > 95% with over six cases. CONCLUSIONS: Our study demonstrates that the reduced international air-travel volume and stringent border entry policy during the COVID-19 pandemic reduced mpox importations prominently. However, the risk could be substantially higher with the recovery of air-travel volume to pre-pandemic level. Mpox could emerge as a public health threat for Chinese mainland given its large MSM community.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Humanos , Masculino , China/epidemiología , Brotes de Enfermedades , Homosexualidad Masculina , Modelos Estadísticos , Pandemias/prevención & control , Estudios Retrospectivos
3.
BMJ Open ; 13(12): e071284, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38070892

RESUMEN

PURPOSE: The RESPIRA cohort aims to describe the nature, magnitude, time course and efficacy of the immune response to SARS-CoV-2 infection and vaccination, population prevalence, and household transmission of COVID-19. PARTICIPANTS: From November 2020, we selected age-stratified random samples of COVID-19 cases from Costa Rica confirmed by PCR. For each case, two population-based controls, matched on age, sex and census tract were recruited, supplemented with hospitalised cases and household contacts. Participants were interviewed and blood and saliva collected for antibodies and PCR tests. Participants will be followed for 2 years to assess antibody response and infection incidence. FINDINGS TO DATE: Recruitment included 3860 individuals: 1150 COVID-19 cases, 1999 population controls and 719 household contacts from 304 index cases. The age and regional distribution of cases was as planned, including four age strata, 30% rural and 70% urban. The control cohort had similar sex, age and regional distribution as the cases according to the study design. Among the 1999 controls recruited, 6.8% reported at enrolment having had COVID-19 and an additional 12.5% had antibodies against SARS-CoV-2. Compliance with visits and specimens has been close to 70% during the first 18 months of follow-up. During the study, national vaccination was implemented and nearly 90% of our cohort participants were vaccinated during follow-up. FUTURE PLANS: RESPIRA will enable multiple analyses, including population prevalence of infection, clinical, behavioural, immunological and genetic risk factors for SARS-CoV-2 acquisition and severity, and determinants of household transmission. We are conducting retrospective and prospective assessment of antibody levels, their determinants and their protective efficacy after infection and vaccination, the impact of long-COVID and a series of ancillary studies. Follow-up continues with bimonthly saliva collection for PCR testing and biannual blood collection for immune response analyses. Follow-up will be completed in early 2024. TRIAL REGISTRATION NUMBER: NCT04537338.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Síndrome Post Agudo de COVID-19 , Costa Rica/epidemiología , Estudios Prospectivos , Estudios Retrospectivos , Anticuerpos , Método Doble Ciego , Inmunidad
4.
Commun Med (Lond) ; 3(1): 102, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481623

RESUMEN

INTRODUCTION: Variability in household secondary attack rates and transmission risks factors of SARS-CoV-2 remain poorly understood. METHODS: We conducted a household transmission study of SARS-CoV-2 in Costa Rica, with SARS-CoV-2 index cases selected from a larger prospective cohort study and their household contacts were enrolled. A total of 719 household contacts of 304 household index cases were enrolled from November 21, 2020, through July 31, 2021. Blood specimens were collected from contacts within 30-60 days of index case diagnosis; and serum was tested for presence of spike and nucleocapsid SARS-CoV-2 IgG antibodies. Evidence of SARS-CoV-2 prior infections among household contacts was defined based on the presence of both spike and nucleocapsid antibodies. We fitted a chain binomial model to the serologic data, to account for exogenous community infection risk and potential multi-generational transmissions within the household. RESULTS: Overall seroprevalence was 53% (95% confidence interval (CI) 48-58%) among household contacts. The estimated household secondary attack rate is 34% (95% CI 5-75%). Mask wearing by the index case is associated with the household transmission risk reduction by 67% (adjusted odds ratio = 0.33 with 95% CI: 0.09-0.75) and not sharing bedroom with the index case is associated with the risk reduction of household transmission by 78% (adjusted odds ratio = 0.22 with 95% CI 0.10-0.41). The estimated distribution of household secondary attack rates is highly heterogeneous across index cases, with 30% of index cases being the source for 80% of secondary cases. CONCLUSIONS: Modeling analysis suggests that behavioral factors are important drivers of the observed SARS-CoV-2 transmission heterogeneity within the household.


When living in the same house with known SARS-CoV-2 cases, household members may change their behavior and adopt preventive measures to reduce the spread of SARS-CoV-2. To understand how behavioral factors affect SARS-CoV-2 spreading in household settings, we focused on household members of individuals with laboratory-confirmed SARS-CoV-2 infections and followed the way SARS-CoV-2 spread within the household, by looking at who had antibodies against the virus, which means they were infected. We also asked participants detailed questions about their behavior and applied mathematical modeling to evaluate its impact on SARS-CoV-2 transmission. We found that mask-wearing by the SARS-CoV-2 cases, and avoiding sharing a bedroom with the infected individuals, reduces SARS-CoV-2 transmission. However, caring for SARS-CoV-2 cases, and prolonged interaction with infected individuals facilitate SARS-CoV-2 spreading. Our study helps inform what behaviors can help reduce SARS-CoV-2 transmission within a household.

5.
Proc Natl Acad Sci U S A ; 120(22): e2221887120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216529

RESUMEN

Estimating the differences in the incubation-period, serial-interval, and generation-interval distributions of SARS-CoV-2 variants is critical to understanding their transmission. However, the impact of epidemic dynamics is often neglected in estimating the timing of infection-for example, when an epidemic is growing exponentially, a cohort of infected individuals who developed symptoms at the same time are more likely to have been infected recently. Here, we reanalyze incubation-period and serial-interval data describing transmissions of the Delta and Omicron variants from the Netherlands at the end of December 2021. Previous analysis of the same dataset reported shorter mean observed incubation period (3.2 d vs. 4.4 d) and serial interval (3.5 d vs. 4.1 d) for the Omicron variant, but the number of infections caused by the Delta variant decreased during this period as the number of Omicron infections increased. When we account for growth-rate differences of two variants during the study period, we estimate similar mean incubation periods (3.8 to 4.5 d) for both variants but a shorter mean generation interval for the Omicron variant (3.0 d; 95% CI: 2.7 to 3.2 d) than for the Delta variant (3.8 d; 95% CI: 3.7 to 4.0 d). The differences in estimated generation intervals may be driven by the "network effect"-higher effective transmissibility of the Omicron variant can cause faster susceptible depletion among contact networks, which in turn prevents late transmission (therefore shortening realized generation intervals). Using up-to-date generation-interval distributions is critical to accurately estimating the reproduction advantage of the Omicron variant.


Asunto(s)
COVID-19 , Epidemias , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Países Bajos/epidemiología
6.
Head Neck ; 45(8): 2108-2119, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37194205

RESUMEN

The timing of postoperative radiotherapy following surgical intervention in patients with head and neck cancer remains a controversial issue. This review aims to summarize findings from available studies to investigate the influence of time delays between surgery and postoperative radiotherapy on clinical outcomes. Articles between 1 January 1995 and 1 February 2022 were sourced from PubMed, Web of Science, and ScienceDirect. Twenty-three articles met the study criteria and were included; ten studies showed that delaying postoperative radiotherapy might negatively impact patients and lead to a poorer prognosis. Delaying the start time of radiotherapy, 4 weeks after surgery did not result in poorer prognoses for patients with head and neck cancer, although delays beyond 6 weeks might worsen patients' overall survival, recurrence-free survival, and locoregional control. Prioritization of treatment plans to optimize the timing of postoperative radiotherapy regimes is recommended.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Radioterapia Adyuvante , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/cirugía , Pronóstico , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/cirugía , Recurrencia Local de Neoplasia , Estudios Retrospectivos
7.
China CDC Wkly ; 5(5): 108-112, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37006709

RESUMEN

What is already known about this topic?: China has repeatedly contained multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks through a comprehensive set of targeted non-pharmaceutical interventions (NPIs). However, the effectiveness of such NPIs has not been systematically assessed. What is added by this report?: A multilayer deployment of case isolation, contact tracing, targeted community lockdowns, and mobility restrictions could potentially contain outbreaks caused by the SARS-CoV-2 ancestral strain, without the requirement of city-wide lockdowns. Mass testing could further aid in the efficacy and speed of containment. What are the implications for public health practice?: Pursuing containment in a timely fashion at the beginning of the pandemic, before the virus had the opportunity to spread and undergo extensive adaptive evolution, could help in averting an overall pandemic disease burden and be socioeconomically cost-effective.

8.
China CDC Wkly ; 5(3): 56-62, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36776461

RESUMEN

What is already known about this topic?: Little is known about the epidemiology, natural history, and transmission patterns of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant. Monitoring the evolution of viral fitness of SARS-CoV-2 in the host population is key for preparedness and response planning. What is added by this report?: We analyzed a successfully contained local outbreak of Delta that took place in Hunan, China, and provided estimates of time-to-key event periods, infectiousness over time, and risk factors for SARS-CoV-2 infection and transmission for a still poorly understood variant. What are the implications for public health practice?: Our findings simultaneously shed light on both the characteristics of the Delta variant, by identifying key age groups, risk factors, and transmission pathways, and planning a future response effort against SARS-CoV-2.

9.
Nat Commun ; 14(1): 246, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646700

RESUMEN

South Africa was among the first countries to detect the SARS-CoV-2 Omicron variant. However, the size of its Omicron BA.1 and BA.2 subvariants (BA.1/2) wave remains poorly understood. We analyzed sequential serum samples collected through a prospective cohort study before, during, and after the Omicron BA.1/2 wave to infer infection rates and monitor changes in the immune histories of participants over time. We found that the Omicron BA.1/2 wave infected more than half of the cohort population, with reinfections and vaccine breakthroughs accounting for > 60% of all infections in both rural and urban sites. After the Omicron BA.1/2 wave, we found few (< 6%) remained naïve to SARS-CoV-2 and the population immunologic landscape is fragmented with diverse infection/immunization histories. Prior infection with the ancestral strain, Beta, and Delta variants provided 13%, 34%, and 51% protection against Omicron BA.1/2 infection, respectively. Hybrid immunity and repeated prior infections reduced the risks of Omicron BA.1/2 infection by 60% and 85% respectively. Our study sheds light on a rapidly shifting landscape of population immunity in the Omicron era and provides context for anticipating the long-term circulation of SARS-CoV-2 in populations no longer naïve to the virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Sudáfrica/epidemiología , COVID-19/epidemiología , Estudios Prospectivos
10.
BMC Med ; 20(1): 442, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380354

RESUMEN

BACKGROUND: The SARS-CoV-2 containment strategy has been successful in mainland China prior to the emergence of Omicron. However, in the era of highly transmissible variants, whether it is possible for China to sustain a local containment policy and under what conditions China could transition away from it are of paramount importance at the current stage of the pandemic. METHODS: We developed a spatially structured, fully stochastic, individual-based SARS-CoV-2 transmission model to evaluate the feasibility of sustaining SARS-CoV-2 local containment in mainland China considering the Omicron variants, China's current immunization level, and nonpharmaceutical interventions (NPIs). We also built a statistical model to estimate the overall disease burden under various hypothetical mitigation scenarios. RESULTS: We found that due to high transmissibility, neither Omicron BA.1 nor BA.2 could be contained by China's pre-Omicron NPI strategies which were successful prior to the emergence of the Omicron variants. However, increased intervention intensity, such as enhanced population mobility restrictions and multi-round mass testing, could lead to containment success. We estimated that an acute Omicron epidemic wave in mainland China would result in significant number of deaths if China were to reopen under current vaccine coverage with no antiviral uptake, while increasing vaccination coverage and antiviral uptake could substantially reduce the disease burden. CONCLUSIONS: As China's current vaccination has yet to reach high coverage in older populations, NPIs remain essential tools to maintain low levels of infection while building up protective population immunity, ensuring a smooth transition out of the pandemic phase while minimizing the overall disease burden.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anciano , SARS-CoV-2/genética , Estudios de Factibilidad , COVID-19/epidemiología , COVID-19/prevención & control , China/epidemiología
11.
medRxiv ; 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36263065

RESUMEN

Prior to the emergence of the Omicron variant, many cities in China had been able to maintain a "Zero-COVID" policy. They were able to achieve this without blanket city-wide lockdown and through widespread testing and an extensive set of nonpharmaceutical interventions (NPIs), such as mask wearing, contact tracing, and social distancing. We wanted to examine the effectiveness of such a policy in containing SARS-CoV-2 in the early stage of the pandemic. Therefore, we developed a fully stochastic, spatially structured, agent-based model of SARS-CoV-2 ancestral strain and reconstructed the Beijing Xinfadi outbreak through computational simulations. We found that screening for symptoms and among high-risk populations served as methods to discover cryptic community transmission in the early stage of the outbreak. Effective contact tracing could greatly reduce transmission. Targeted community lockdown and temporal mobility restriction could slow down the spatial spread of the virus, with much less of the population being affected. Population-wide mass testing could further improve the speed at which the outbreak is contained. Our analysis suggests that the containment of SARS-CoV-2 ancestral strains was certainly possible. Outbreak suppression and containment at the beginning of the pandemic, before the virus had the opportunity to undergo extensive adaptive evolution with increasing fitness in the human population, could be much more cost-effective in averting the overall pandemic disease burden and socioeconomic cost.

12.
Emerg Microbes Infect ; 11(1): 2800-2807, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36205530

RESUMEN

An outbreak of COVID-19 caused by the SARS-CoV-2 Omicron BA.2 sublineage occurred in Shanghai, China from February 26 to June 30, 2022. We use official reported data retrieved from Shanghai municipal Health Commissions to estimate the incidence of infections, severe/critical infections, and deaths to assess the disease burden. By adjusting for right censoring and RT-PCR sensitivity, we provide estimates of clinical severity, including the infection fatality ratio, symptomatic case fatality ratio, and risk of developing severe/critical disease upon infection. The overall infection rate, severe/critical infection rate, and mortality rate were 2.74 (95% CI: 2.73-2.74) per 100 individuals, 6.34 (95% CI: 6.02-6.66) per 100,000 individuals and 2.42 (95% CI: 2.23-2.62) per 100,000 individuals, respectively. The severe/critical infection rate and mortality rate increased with age, noted in individuals aged 80 years or older. The overall fatality ratio and risk of developing severe/critical disease upon infection were 0.09% (95% CI: 0.09-0.10%) and 0.27% (95% CI: 0.24-0.29%), respectively. Having received at least one vaccine dose led to a 10-fold reduction in the risk of death for infected individuals aged 80 years or older. Under the repeated population-based screenings and strict intervention policies implemented in Shanghai, our results found a lower disease burden and mortality of the outbreak compared to other settings and countries, showing the impact of the successful outbreak containment in Shanghai. The estimated low clinical severity of this Omicron BA.2 epidemic in Shanghai highlight the key contribution of vaccination and availability of hospital beds to reduce the risk of death.


Asunto(s)
COVID-19 , Humanos , Anciano de 80 o más Años , SARS-CoV-2 , China/epidemiología , Costo de Enfermedad , Brotes de Enfermedades
13.
Res Sq ; 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36172128

RESUMEN

Variability in household secondary attack rates (SAR) and transmission risks factors of SARS-CoV-2 remain poorly understood. To characterize SARS-CoV-2 transmission in a household setting, we conducted a household serologic study of SARS-CoV-2 in Costa Rica, with SARS-CoV-2 index cases selected from a larger prospective cohort study and their household contacts were enrolled. A total of 719 household contacts of 304 household index cases were enrolled from November 21, 2020, through July 31, 2021. Demographic, clinical, and behavioral information was collected from the index cases and their household contacts. Blood specimens were collected from contacts within 30-60 days of index case diagnosis; and serum was tested for presence of spike and nucleocapsid SARS-CoV-2 IgG antibodies. Evidence of SARS-CoV-2 prior infections among household contacts was defined based on the presence of both spike and nucleocapsid antibodies. To avoid making strong assumptions that the index case was the sole source of infections among household contacts, we fitted a chain binomial model to the serologic data, which allowed us to account for exogenous community infection risk as well as potential multi-generational transmissions within the household. Overall seroprevalence was 53% (95% confidence interval (CI) 48% - 58%) among household contacts The estimated household secondary attack rate (SAR) was 32% (95% CI 5% - 74%) and the average community infection risk was 19% (95% CI 14% - 26%). Mask wearing by the index case was associated with the household transmission risk reduction by 67% (adjusted odds ratio = 0.33 with 95% CI: 0.09-0.75) and sleeping in a separate bedroom from the index case reduced the risk of household transmission by 78% (adjusted odds ratio = 0.22 with 95% CI 0.10-0.41). The estimated distribution of household secondary attack rates was highly heterogeneous across index cases, with 30% of index cases being the source for 80% of secondary cases. Modeling analysis suggests behavioral factors were important drivers of the observed SARS-CoV-2 transmission heterogeneity within the household.

14.
Lancet Reg Health West Pac ; 29: 100592, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36090701

RESUMEN

Background: In early March 2022, a major outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant spread rapidly throughout Shanghai, China. Here we aimed to provide a description of the epidemiological characteristics and spatiotemporal transmission dynamics of the Omicron outbreak under the population-based screening and lockdown policies implemented in Shanghai. Methods: We extracted individual information on SARS-CoV-2 infections reported between January 1 and May 31, 2022, and on the timeline of the adopted non-pharmaceutical interventions. The epidemic was divided into three phases: i) sporadic infections (January 1-February 28), ii) local transmission (March 1-March 31), and iii) city-wide lockdown (April 1 to May 31). We described the epidemic spread during these three phases and the subdistrict-level spatiotemporal distribution of the infections. To evaluate the impact on the transmission of SARS-CoV-2 of the adopted targeted interventions in Phase 2 and city-wide lockdown in Phase 3, we estimated the dynamics of the net reproduction number (Rt ). Findings: A surge in imported infections in Phase 1 triggered cryptic local transmission of the Omicron variant in early March, resulting in the largest outbreak in mainland China since the original wave. A total of 626,000 SARS-CoV-2 infections were reported in 99.5% (215/216) of the subdistricts of Shanghai until the end of May. The spatial distribution of the infections was highly heterogeneous, with 37% of the subdistricts accounting for 80% of all infections. A clear trend from the city center towards adjacent suburban and rural areas was observed, with a progressive slowdown of the epidemic spread (from 463 to 244 meters/day) prior to the citywide lockdown. During Phase 2, Rt remained well above 1 despite the implementation of multiple targeted interventions. The citywide lockdown imposed on April 1 led to a marked decrease in transmission, bringing Rt below the epidemic threshold in the entire city on April 14 and ultimately leading to containment of the outbreak. Interpretation: Our results highlight the risk of widespread outbreaks in mainland China, particularly under the heightened pressure of imported infections. The targeted interventions adopted in March 2022 were not capable of halting transmission, and the implementation of a strict, prolonged city-wide lockdown was needed to successfully contain the outbreak, highlighting the challenges for containing Omicron outbreaks. Funding: Key Program of the National Natural Science Foundation of China (82130093); Shanghai Rising-Star Program (22QA1402300).

15.
medRxiv ; 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36032973

RESUMEN

South Africa was among the first countries to detect the SARS-CoV-2 Omicron variant. Propelled by increased transmissibility and immune escape properties, Omicron displaced other globally circulating variants within 3 months of its emergence. Due to limited testing, Omicron's attenuated clinical severity, and an increased risk of reinfection, the size of the Omicron BA.1 and BA.2 subvariants (BA.1/2) wave remains poorly understood in South Africa and in many other countries. Using South African data from urban and rural cohorts closely monitored since the beginning of the pandemic, we analyzed sequential serum samples collected before, during, and after the Omicron BA.1/2 wave to infer infection rates and monitor changes in the immune histories of participants over time. Omicron BA.1/2 infection attack rates reached 65% (95% CI, 60% - 69%) in the rural cohort and 58% (95% CI, 61% - 74%) in the urban cohort, with repeat infections and vaccine breakthroughs accounting for >60% of all infections at both sites. Combined with previously collected data on pre-Omicron variant infections within the same cohorts, we identified 14 distinct categories of SARS-CoV-2 antigen exposure histories in the aftermath of the Omicron BA.1/2 wave, indicating a particularly fragmented immunologic landscape. Few individuals (<6%) remained naïve to SARS-CoV-2 and no exposure history category represented over 25% of the population at either cohort site. Further, cohort participants were more than twice as likely to get infected during the Omicron BA.1/2 wave, compared to the Delta wave. Prior infection with the ancestral strain (with D614G mutation), Beta, and Delta variants provided 13% (95% CI, -21% - 37%), 34% (95% CI, 17% - 48%), and 51% (95% CI, 39% - 60%) protection against Omicron BA.1/2 infection, respectively. Hybrid immunity (prior infection and vaccination) and repeated prior infections (without vaccination) reduced the risks of Omicron BA.1/2 infection by 60% (95% CI, 42% - 72%) and 85% (95% CI, 76% - 92%) respectively. Reinfections and vaccine breakthroughs had 41% (95% CI, 26% - 53%) lower risk of onward transmission than primary infections. Our study sheds light on a rapidly shifting landscape of population immunity, along with the changing characteristics of SARS-CoV-2, and how these factors interact to shape the success of emerging variants. Our findings are especially relevant to populations similar to South Africa with low SARS-CoV-2 vaccine coverage and a dominant contribution of immunity from prior infection. Looking forward, the study provides context for anticipating the long-term circulation of SARS-CoV-2 in populations no longer naïve to the virus.

16.
medRxiv ; 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35898339

RESUMEN

Background: An outbreak of COVID-19 caused by the SARS-CoV-2 Omicron BA.2 sublineage occurred in Shanghai, China from February to June 2022. The government organized multiple rounds of molecular test screenings for the entire population, providing a unique opportunity to capture the majority of subclinical infections and better characterize disease burden and the full spectrum of Omicron BA.2 clinical severity. Methods: Using daily reports from the websites of the Shanghai Municipal Health Commission, we estimated the incidence of infections, severe/critical infections, and deaths to assess the disease burden. By adjusting for right censoring and Reverse Transcription-Polymerase Chain Reaction (RT□PCR) sensitivity, we provide estimates of clinical severity, including the infection fatality risk, symptomatic case fatality risk, and risk of developing severe/critical disease upon infection. Findings: From February 26 to June 30, 2022, the overall infection rate, severe/critical infection rate, and mortality rate were 2.74 (95% CI: 2.73-2.74) per 100 individuals, 6.34 (95% CI: 6.02-6.66) per 100,000 individuals and 2.42 (95% CI: 2.23-2.62) per 100,000 individuals, respectively. The severe/critical infection rate and mortality rate increased with age with the highest rates of 125.29 (95% CI: 117.05-133.44) per 100,000 and 57.17 (95% CI: 51.63-62.71) per 100,000 individuals, respectively, noted in individuals aged 80 years or older. The overall fatality risk and risk of developing severe/critical disease upon infection were 0.09% (95% CI: 0.08-0.10%) and 0.23% (95% CI: 0.20-0.25%), respectively. Having received at least one vaccine dose led to a 10-fold reduction in the risk of death for infected individuals aged 80 years or older. Interpretation: Under the repeated population-based screenings and strict intervention policies implemented in Shanghai, our results found a lower disease burden and mortality of the outbreak compared to other settings and countries, showing the impact of the successful outbreak containment in Shanghai. The estimated low clinical severity of this Omicron BA.2 epidemic in Shanghai highlight the key contribution of vaccination and availability of hospital beds to reduce the risk of death. Funding: Key Program of the National Natural Science Foundation of China (82130093). Research in context: Evidence before this study: We searched PubMed and Europe PMC for manuscripts published or posted on preprint servers after January 1, 2022 using the following query: ("SARS-CoV-2 Omicron") AND ("burden" OR "severity"). No studies that characterized the whole profile of disease burden and clinical severity during the Shanghai Omicron outbreak were found. One study estimated confirmed case fatality risk between different COVID-19 waves in Hong Kong; other outcomes, such as fatality risk and risk of developing severe/critical illness upon infection, were not estimated. One study based on 21 hospitals across the United States focused on Omicron-specific in-hospital mortality based on a limited sample of inpatients (565). In southern California, United States, a study recruited more than 200 thousand Omicron-infected individuals and estimated the 30-day risk of hospital admission, intensive care unit admission, mechanical ventilation, and death. None of these studies estimated infection and mortality rates or other indictors associated with disease burden. Overall, the disease burden and clinical severity of the Omicron BA.2 variant have not been fully characterized, especially in populations predominantly immunized with inactivated vaccines.Added value of this study: The large-scale and multiround molecular test screenings conducted on the entire population during the Omicron BA.2 outbreak in Shanghai, leading to a high infection ascertainment ratio, provide a unique opportunity to capture the majority of subclinical infections. As such, our study provides a comprehensive assessment of both the disease burden and clinical severity of the SARS-CoV-2 Omicron BA.2 sublineage, which are especially lacking for populations predominantly immunized with inactivated vaccines.Implications of all the available evidence: We estimated the disease burden and clinical severity of the Omicron BA.2 outbreak in Shanghai in February-June 2022. These estimates are key to properly interpreting field evidence and assessing the actual spread of Omicron in other settings. Our results also provide support for the importance of strategies to prevent overwhelming the health care system and increasing vaccine coverage to reduce mortality.

17.
medRxiv ; 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35765564

RESUMEN

Background: In early March 2022, a major outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant spread rapidly throughout Shanghai, China. Here we aimed to provide a description of the epidemiological characteristics and spatiotemporal transmission dynamics of the Omicron outbreak under the population-based screening and lockdown policies implemented in Shanghai. Methods: We extracted individual information on SARS-CoV-2 infections reported between January 1 and May 31, 2022, and on the timeline of the adopted non-pharmacological interventions. The epidemic was divided into three phases: i) sporadic infections (January 1-February 28), ii) local transmission (March 1-March 31), and iii) city-wide lockdown (April 1 to May 31). We described the epidemic spread during these three phases and the subdistrict-level spatiotemporal distribution of the infections. To evaluate the impact on the transmission of SARS-CoV-2 of the adopted targeted interventions in Phase 2 and city-wide lockdown in Phase 3, we estimated the dynamics of the net reproduction number ( R t ). Findings: A surge in imported infections in Phase 1 triggered cryptic local transmission of the Omicron variant in early March, resulting in the largest coronavirus disease 2019 (COVID-19) outbreak in mainland China since the original wave. A total of 626,000 SARS-CoV-2 infections were reported in 99.5% (215/216) of the subdistricts of Shanghai. The spatial distribution of the infections was highly heterogeneous, with 40% of the subdistricts accounting for 80% of all infections. A clear trend from the city center towards adjacent suburban and rural areas was observed, with a progressive slowdown of the epidemic spread (from 544 to 325 meters/day) prior to the citywide lockdown. During Phase 2, R t remained well above 1 despite the implementation of multiple targeted interventions. The citywide lockdown imposed on April 1 led to a marked decrease in transmission, bringing R t below the epidemic threshold in the entire city on April 14 and ultimately leading to containment of the outbreak. Interpretation: Our results highlight the risk of widespread outbreaks in mainland China, particularly under the heightened pressure of imported infections. The targeted interventions adopted in March 2022 were not capable of halting transmission, and the implementation of a strict, prolonged city-wide lockdown was needed to successfully contain the outbreak, highlighting the challenges for successfully containing Omicron outbreaks. Funding: Key Program of the National Natural Science Foundation of China (82130093). Research in context: Evidence before this study: On May 24, 2022, we searched PubMed and Europe PMC for papers published or posted on preprint servers after January 1, 2022, using the following query: ("SARS-CoV-2" OR "Omicron" OR "BA.2") AND ("epidemiology" OR "epidemiological" OR "transmission dynamics") AND ("Shanghai"). A total of 26 studies were identified; among them, two aimed to describe or project the spread of the 2022 Omicron outbreak in Shanghai. One preprint described the epidemiological and clinical characteristics of 376 pediatric SARS-CoV-2 infections in March 2022, and the other preprint projected the epidemic progress in Shanghai, without providing an analysis of field data. In sum, none of these studies provided a comprehensive description of the epidemiological characteristics and spatiotemporal transmission dynamics of the outbreak.Added value of this study: We collected individual information on SARS-CoV-2 infection and the timeline of the public health response. Population-based screenings were repeatedly implemented during the outbreak, which allowed us to investigate the spatiotemporal spread of the Omicron BA.2 variant as well as the impact of the implemented interventions, all without enduring significant amounts of underreporting from surveillance systems, as experienced in other areas. This study provides the first comprehensive assessment of the Omicron outbreak in Shanghai, China.Implications of all the available evidence: This descriptive study provides a comprehensive understanding of the epidemiological features and transmission dynamics of the Omicron outbreak in Shanghai, China. The empirical evidence from Shanghai, which was ultimately able to curtail the outbreak, provides invaluable information to policymakers on the impact of the containment strategies adopted by the Shanghai public health officials to prepare for potential outbreaks caused by Omicron or novel variants.

18.
medRxiv ; 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35611330

RESUMEN

We developed a spatially structured, fully stochastic, individual-based SARS-CoV-2 transmission model to evaluate the feasibility of sustaining SARS-CoV-2 local containment in mainland China considering currently dominant Omicron variants, China's current immunization level, and non-pharmaceutical interventions (NPIs). We also built a statistical model to estimate the overall disease burden under various hypothetical mitigation scenarios. We found that due to high transmissibility, neither Omicron BA.1 or BA.2 could be contained by China's pre-Omicron NPI strategies which were successful prior to the emergence of the Omicron variants. However, increased intervention intensity, such as enhanced population mobility restrictions and multi-round mass testing, could lead to containment success. We estimated that an acute Omicron epidemic wave in mainland China would result in significant number of deaths if China were to reopen under current vaccine coverage with no antiviral uptake, while increasing vaccination coverage and antiviral uptake could substantially reduce the disease burden. As China's current vaccination has yet to reach high coverage in older populations, NPIs remain essential tools to maintain low levels of infection while building up protective population immunity, ensuring a smooth transition out of the pandemic phase while minimizing the overall disease burden.

19.
Nat Med ; 28(7): 1468-1475, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537471

RESUMEN

Having adopted a dynamic zero-COVID strategy to respond to SARS-CoV-2 variants with higher transmissibility since August 2021, China is now considering whether, and for how long, this policy can remain in place. The debate has thus shifted towards the identification of mitigation strategies for minimizing disruption to the healthcare system in the case of a nationwide epidemic. To this aim, we developed an age-structured stochastic compartmental susceptible-latent-infectious-removed-susceptible model of SARS-CoV-2 transmission calibrated on the initial growth phase for the 2022 Omicron outbreak in Shanghai, to project COVID-19 burden (that is, number of cases, patients requiring hospitalization and intensive care, and deaths) under hypothetical mitigation scenarios. The model also considers age-specific vaccine coverage data, vaccine efficacy against different clinical endpoints, waning of immunity, different antiviral therapies and nonpharmaceutical interventions. We find that the level of immunity induced by the March 2022 vaccination campaign would be insufficient to prevent an Omicron wave that would result in exceeding critical care capacity with a projected intensive care unit peak demand of 15.6 times the existing capacity and causing approximately 1.55 million deaths. However, we also estimate that protecting vulnerable individuals by ensuring accessibility to vaccines and antiviral therapies, and maintaining implementation of nonpharmaceutical interventions could be sufficient to prevent overwhelming the healthcare system, suggesting that these factors should be points of emphasis in future mitigation policies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales , COVID-19/epidemiología , China/epidemiología , Humanos
20.
Sci Transl Med ; 14(659): eabo7081, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35638937

RESUMEN

Understanding the build-up of immunity with successive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the epidemiological conditions that favor rapidly expanding epidemics will help facilitate future pandemic control. We analyzed high-resolution infection and serology data from two longitudinal household cohorts in South Africa to reveal high cumulative infection rates and durable cross-protective immunity conferred by prior infection in the pre-Omicron era. Building on the history of past exposures to different SARS-CoV-2 variants and vaccination in the cohort most representative of South Africa's high urbanization rate, we used mathematical models to explore the fitness advantage of the Omicron variant and its epidemic trajectory. Modeling suggests that the Omicron wave likely infected a large fraction (44 to 81%) of the population, leaving a complex landscape of population immunity primed and boosted with antigenically distinct variants. We project that future SARS-CoV-2 resurgences are likely under a range of scenarios of viral characteristics, population contacts, and residual cross-protection.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Pandemias , Sudáfrica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...