Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696478

RESUMEN

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Asunto(s)
Calcio , Glutamato Descarboxilasa , Ácido Glutámico , Ácido Kaínico , Ratones Transgénicos , Parvalbúminas , Estado Epiléptico , Ácido gamma-Aminobutírico , Animales , Parvalbúminas/metabolismo , Glutamato Descarboxilasa/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/inducido químicamente , Ácido gamma-Aminobutírico/metabolismo , Ácido Glutámico/metabolismo , Masculino , Calcio/metabolismo , Ratones , Hipocampo/metabolismo , Modelos Animales de Enfermedad
2.
Front Pharmacol ; 15: 1336122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405667

RESUMEN

Background: Epilepsy is a prevalent neurological disease where neuroinflammation plays a significant role in epileptogenesis. Recent studies have suggested that Astragalus polysaccharides (APS) have anti-inflammatory properties, which make them a potential candidate for neuroprotection against central nervous system disease. Nevertheless, the extent of their effectiveness in treating epilepsy remains enigmatic. Therefore, our study aims to investigate the potential of APS to mitigate epileptogenesis and its comorbidities by exploring its underlying mechanism. Methods: Initially, we employed pentylenetetrazol-induced seizure mice to validate APS' effectiveness. Subsequently, we employed network pharmacology analysis to probe the possible targets and signaling pathways of APS in treating epilepsy. Ultimately, we verified the key targets and signaling pathways experimentally, predicting their mechanisms of action. Results: APS have been observed to disturb the acquisition process of kindling, leading to reduced seizure scores and a lower incidence of complete kindling. Moreover, APS has been found to improve cognitive impairments and prevent hippocampal neuronal damage during the pentylenetetrazole (PTZ)-kindling process. Subsequent network pharmacology analysis revealed that APS potentially exerted their anti-epileptic effects by targeting cytokine and toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) signaling pathways. Finally, experimental findings showed that APS efficiently inhibited the activation of astrocytes and reduced the release of pro-inflammatory mediators, such as interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, APS impeded the activation of the TLR4/NF-κB signaling cascade in a PTZ-induced kindling mouse model. Conclusion: The outcomes of our study suggest that APS exerts an impact on epileptogenesis and mitigates cognitive impairment by impeding neuroinflammatory processes. The mechanism underlying these observations may be attributed to the modulation of the TLR4/NF-κB signaling pathway, resulting in a reduction of the release of inflammatory mediators. These findings partially agree with the predictions derived from network pharmacology analyses. As such, APS represents a potentially innovative and encouraging adjunct therapeutic option for epileptogenesis and cognitive deficit.

3.
Neurologist ; 29(2): 76-81, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019186

RESUMEN

OBJECTIVE: This study aimed to explore the burden of magnetic resonance imaging (MRI) of cerebral small vessel disease (CSVD) in patients with thalassemia and related risk factors. METHODS: The clinical data and MRI of patients with thalassemia were retrospectively analyzed, and non-thalassemia controls with matched sex and age were selected. The modified MRI burden of CSVD included recent small subcortical infarct, presumed vasogenic white matter hyperintensity, presumed vasogenic lacunae, perivascular space (PVS), and brain atrophy. RESULTS: This study included 110 patients in each of the thalassemia and control groups. There was no significant difference in sex, age, and common cerebrovascular disease risk factors between the 2 groups. The patients with thalassemia had a higher red blood cell count and lower content of hemoglobin. The PVS and modified MRI burden scores in the thalassemia group were higher than in the control group. With the increase in age, patients with thalassemia have a more severe CSVD burden. CONCLUSION: Patients with thalassemia have a heavier modified MRI burden of CSVD than non-thalassemia patients, particularly PVS, and aging is an important risk factor for CSVD changes.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Talasemia , Humanos , Estudios Retrospectivos , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética , Factores de Riesgo , Talasemia/complicaciones , Talasemia/diagnóstico por imagen
4.
Brain Sci ; 13(10)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37891861

RESUMEN

OBJECTIVE: The structural covariance network (SCN) alterations in patients with temporal lobe epilepsy and comorbid sleep disorder (PWSD) remain poorly understood. This study aimed to investigate changes in SCNs using structural magnetic resonance imaging. METHODS: Thirty-four PWSD patients, thirty-three patients with temporal lobe epilepsy without sleep disorder (PWoSD), and seventeen healthy controls underwent high-resolution structural MRI imaging. Subsequently, SCNs were constructed based on gray matter volume and analyzed via graph-theoretical approaches. RESULTS: PWSD exhibited significantly increased clustering coefficients, shortest path lengths, transitivity, and local efficiency. In addition, various distributions and numbers of SCN hubs were identified in PWSD. Furthermore, PWSD networks were less robust to random and target attacks than those of healthy controls and PWoSD patients. CONCLUSION: This study identifies aberrant SCN changes in PWSD that may be related to the susceptibility of patients with epilepsy to sleep disorders.

5.
J Transl Med ; 21(1): 707, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814294

RESUMEN

BACKGROUND: Seizures are associated with a decrease in γ-aminobutyric type A acid receptors (GABAaRs) on the neuronal surface, which may be regulated by enhanced internalization of GABAaRs. When interactions between GABAaR subunit α-1 (GABRA1) and postsynaptic scaffold proteins are weakened, the α1-containing GABAaRs leave the postsynaptic membrane and are internalized. Previous evidence suggested that neuroplastin (NPTN) promotes the localization of GABRA1 on the postsynaptic membrane. However, the association between NPTN and GABRA1 in seizures and its effect on the internalization of α1-containing GABAaRs on the neuronal surface has not been studied before. METHODS: An in vitro seizure model was constructed using magnesium-free extracellular fluid, and an in vivo model of status epilepticus (SE) was constructed using pentylenetetrazole (PTZ). Additionally, in vitro and in vivo NPTN-overexpression models were constructed. Electrophysiological recordings and internalization assays were performed to evaluate the action potentials and miniature inhibitory postsynaptic currents of neurons, as well as the intracellular accumulation ratio of α1-containing GABAaRs in neurons. Western blot analysis was performed to detect the expression of GABRA1 and NPTN both in vitro and in vivo. Immunofluorescence co-localization analysis and co-immunoprecipitation were performed to evaluate the interaction between GABRA1 and NPTN. RESULTS: The expression of GABRA1 was found to be decreased on the neuronal surface both in vivo and in vitro seizure models. In the in vitro seizure model, α1-containing GABAaRs showed increased internalization. NPTN expression was found to be positively correlated with GABRA1 expression on the neuronal surface both in vivo and in vitro seizure models. In addition, NPTN overexpression alleviated seizures and NPTN was shown to bind to GABRA1 to form protein complexes that can be disrupted during seizures in both in vivo and in vitro models. Furthermore, NPTN was found to inhibit the internalization of α1-containing GABAaRs in the in vitro seizure model. CONCLUSION: Our findings provide evidence that NPTN may exert antiepileptic effects by binding to GABRA1 to inhibit the internalization of α1-containing GABAaRs.


Asunto(s)
Anticonvulsivantes , Receptores de GABA-A , Humanos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/metabolismo , Proteínas Portadoras/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Neuronas , Receptores de GABA-A/metabolismo , Convulsiones/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-37587811

RESUMEN

BACKGROUND: Astragalus polysaccharides (APS), a group of bioactive compounds obtained from the natural source Astragalus membranaceus(AM), exhibits numerous pharmacological actions in the central nervous system, such as anti-inflammatory, antioxidant, and immunomodulatory properties. Despite the remarkable benefits, the effectiveness of APS in treating anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and the corresponding mechanism have yet to be fully understood. As such, this study aims to investigate the impact of APS on anti-NMDAR encephalitis and explore the potential molecular network mechanism. METHODS: The impact of APS intervention on mice with anti-NMDAR encephalitis was assessed, and the possible molecular network mechanism was investigated utilizing network pharmacology and bioinformatics techniques such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),protein-protein interaction (PPI) network, and molecular docking. Enzyme-linked immunosorbent assay (ELISA) was applied to detect the expression of core target proteins. RESULTS: APS significantly ameliorated cognitive impairment and reduced susceptibility to PTZ-induced seizures in mice with anti-NMDAR encephalitis, confirming the beneficial effect of APS on anti-NMDAR encephalitis. Seventeen intersecting genes were identified between APS and anti-NMDAR encephalitis. GO and KEGG analyses revealed the characteristics of the intersecting gene networks. STRING interaction in the PPI network was applied to find crucial molecules. The results of molecular docking suggested that APS may regulate interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) as potential targets in anti-NMDAR encephalitis. Furthermore, the levels of IL-1ß, IL-6, and TNF-α detected by ELISA in anti-NMDAR encephalitis mice were significantly downregulated in response to the administration of APS. CONCLUSION: The findings of this study demonstrate the significant role of APS in the treatment of anti-NMDAR encephalitis, as it effectively suppresses inflammatory cytokines. These results suggest that APS has the potential to be considered as a viable herbal medication for the treatment of anti-NMDAR encephalitis.

7.
Epilepsy Behav ; 140: 109101, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736237

RESUMEN

OBJECTIVE: The white matter structural network changes remain poorly understood in patients with temporal lobe epilepsy and comorbid headache (PWH). This study aimed at exploring topological changes in the structural network. METHODS: Twenty-five PWH, 32 patients with temporal lobe epilepsy without headache, and 22 healthy controls were recruited in this study. High-resolution structural MRI and diffusion tensor imaging data were acquired from these participants. A graph theory-based approach was employed to characterize the topological properties of the structural network. A network-based statistical analysis was employed to explore abnormal connectivity alterations in PWH. RESULTS: Compared with healthy controls, PWH exhibited significantly decreased small-world index, shortest path length, increased clustering coefficient, global efficiency, and local efficiency. Patients with temporal lobe epilepsy and comorbid headache displayed a significantly reduced small-world index, shortest path length, and increased global efficiency when compared with patients with temporal lobe epilepsy without headache. In addition, PWH exhibited abnormal local network parameters, mainly located in the prefrontal, temporal, occipital, and parietal regions. Furthermore, network-based statistical analysis revealed that PWH had abnormal structural connections between the temporoparietal lobe, occipital lobe, insula, cingulate gyrus, and thalamus. CONCLUSION: This study reveals the abnormal white matter structural network alterations in PWH, allowing a better insight into the neuroanatomical mechanisms that predispose epileptic patients to comorbid headaches from the network levels.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Cefalea/complicaciones , Cefalea/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
8.
Front Psychiatry ; 13: 997758, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213924

RESUMEN

Objective: This study aimed to investigate white matter (WM) microstructural alterations and their relationship correlation with disease severity in anti-NMDA receptor (NMDAR) encephalitis. Multivariate pattern analysis (MVPA) was applied to discriminate between patients and healthy controls and explore potential imaging biomarkers. Methods: Thirty-two patients with anti-NMDAR encephalitis and 26 matched healthy controls underwent diffusion tensor imaging. Tract-based spatial statistics and atlas-based analysis were used to determine WM microstructural alterations between the two groups. MVPA, based on a machine-learning algorithm, was applied to classify patients and healthy controls. Results: Patients exhibited significantly reduced fractional anisotropy in the corpus callosum, fornix, cingulum, anterior limb of the internal capsule, and corona radiata. Moreover, mean diffusivity was increased in the anterior corona radiata and body of the corpus callosum. On the other hand, radial diffusivity was increased in the anterior limb of the internal capsule, cingulum, corpus callosum, corona radiata, and fornix. WM changes in the cingulum, fornix, and retrolenticular part of the internal capsule were correlated with disease severity. The accuracy, sensitivity, and specificity of fractional anisotropy-based classification were each 78.33%, while they were 67.71, 65.83, and 70% for radial diffusivity. Conclusion: Widespread WM lesions were detected in anti-NMDAR encephalitis. The correlation between WM abnormalities and disease severity suggests that these alterations may serve a key role in the pathophysiological mechanisms of anti-NMDAR encephalitis. The combination of tract-based spatial statistics and MVPA may provide more specific and complementary information at the group and individual levels.

9.
Life Sci ; 232: 116501, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31163175

RESUMEN

AIMS: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). The disease mechanisms driving progressive MS remain unresolved. Without this information, current therapeutic strategies are unsatisfactory in preventing disease progression. Our previous work revealed that DL-3-n-butylphthalide (NBP) treatment reduced demyelination in an ethidium bromide mouse model of demyelination. Here, we examine the effect of NBP in the cuprizone model of demyelination by evaluating the pathologic, functional, and behavioral consequences of treatment with NBP. MATERIALS AND METHODS: Forty mice were divided randomly into 4 groups: a normal diet group, a cuprizone diet group, and two NBP groups (10 and 20 mg/kg). CNS infiltration by microglia, axon health and myelination were assessed using immunohistochemistry and electron microscopy, and the levels of cytoplasmic complexes were assessed by Western blotting. KEY FINDINGS: The results showed the neuroprotective effects of the NBP included suppressing the microglia activation through inhibition of nuclear factor-κB (NF-κB) expression, thus decreasing activation of the NF-κB signaling pathway. In particular, myelin density was increased due to an increased mean number of mature oligodendrocytes (OLs) in the high-dose NBP (20 mg/kg) subgroup through reduced oligodendrocyte apoptosis. Meanwhile, increased expression of myelin sheath proteins, including proteolipid protein (PLP) and myelin basic protein (MBP), was observed in the same subgroup. SIGNIFICANCE: These data suggest that NBP may not only have anti-inflammatory properties but also promote the survival of OLs in a mouse cuprizone model of demyelination. NBP may have a potential role in the treatment of MS.


Asunto(s)
Benzofuranos/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Animales , Astrocitos/metabolismo , Axones/patología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/fisiología , Cuprizona/farmacología , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/metabolismo , FN-kappa B/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA