Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e28432, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628724

RESUMEN

Non-typhoidal Salmonella infection is among the most frequent foodborne diseases threatening human health worldwide. The host circadian clock orchestrates daily rhythms to adapt to environmental changes, including coordinating immune function in response to potential infections. However, the molecular mechanisms underlying the interplay between the circadian clock and the immune system in modulating infection processes are incompletely understood. Here, we demonstrate that NLRP6, a novel nucleotide-oligomerization domain (NOD)-like receptor (NLR) family member highly expressed in the intestine, is closely associated with the differential day-night response to Salmonella infection. The core clock component REV-ERBα negatively regulates NLRP6 transcription, leading to the rhythmic expression of NLRP6 and the secretion of IL-18 in intestinal epithelial cells, playing a crucial role in mediating the differential day-night response to Salmonella infection. Activating REV-ERBα with agonist SR9009 in wild-type mice attenuated the severity of infection by decreasing the NLRP6 level in intestinal epithelial cells. Our findings provide new insights into the association between the host circadian clock and the immune response to enteric infections by revealing the regulation of Salmonella infection via the inhibitory effect of REV-ERBα on NLRP6 transcription. Targeting REV-ERBα to modulate NLRP6 activation may be a potential therapeutic strategy for bacterial infections.

2.
iScience ; 27(4): 109339, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500819

RESUMEN

Programmed cell death (PCD) is tightly orchestrated by molecularly defined executors and signaling pathways. NLRP6, a member of cytoplasmic pattern recognition receptors, has a multifaceted role in host resistance to bacterial infection. However, whether and how NLRP6 may contribute to regulate host PCD during Gram-negative bacterial infection remain to be illuminated. Here, we report that NLRP6 promotes RIP1 kinase-mediated necroptosis, a form of lytic PCD, in both an in vitro and in vivo model of Salmonella typhimurium infection. By downregulating TAK1-mediated p38MAPK/MK2 phosphorylation, NLRP6 decreased RIP1 phosphorylation at residue S321 and subsequently increased RIP1 kinase-dependent MLKL phosphorylation. Suppression of p38MAPK/MK2 cascade not only reduced the number of dead cells caused by NLRP6 but also decreased the systemic dissemination of S. typhimurium resulting from NLRP6. Taken together, our findings provide new insights into the role and regulatory mechanism of NLRP6-associated antimicrobial responses by revealing a function for NLRP6 in regulating necroptosis.

3.
Front Endocrinol (Lausanne) ; 14: 1157165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950678

RESUMEN

Mistimed food intake in relation to the day/night cycle disrupts the synchrony of circadian rhythms in peripheral tissues and increases the risk of metabolic diseases. However, the health effects over generations have seldom been explored. Here, we established a 10-generation mouse model that was continuously fed with daytime-restricted feeding (DRF). We performed RNA-seq analysis of mouse liver samples obtained every 4 h over a 24 h period from F2, F5 and F10 generations exposed to DRF. Multigenerational DRF programs the diurnal rhythmic transcriptome through a gain or loss of diurnal rhythmicity over generations. Gene ontology (GO) analysis of the differential rhythmic transcriptome revealed that adaptation to persistent DRF is accompanied by impaired endoplasmic reticulum (ER) stress. Consistently, a substantially higher level of folding-deficient proinsulin was observed in F10 liver tissues than in F2 and F5 liver tissues following tail vein injection. Subsequently, tunicamycin induced more hepatocyte death in F10 samples than in F2 and F5 samples. These data demonstrate that mistimed food intake could produce cumulative effects over generations on ER stress sensitivity in mice.


Asunto(s)
Ritmo Circadiano , Transcriptoma , Ratones , Animales , Ritmo Circadiano/genética , Respuesta de Proteína Desplegada/genética
4.
Cell Death Discov ; 8(1): 44, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110556

RESUMEN

Salmonella is one of the most important worldwide zoonotic pathogens. After invading a host orally, the bacteria break through the intestinal epithelial barrier for further invasion. Intestinal epithelial cells (IECs) play a crucial role in maintaining the integrity of the intestinal epithelial barrier. Necroptosis is considered one of the virulence strategies utilized by invasive Salmonella. Our previous work has shown that SpvB, an effector encoded by S. Typhimurium virulence plasmid (pSLT), promotes bacterial translocation via the paracellular route. However, it is still unknown whether SpvB could promote bacterial invasion through disrupting the integrity of IECs. Here, we demonstrated that SpvB promoted necroptosis of IECs and contributed to the destruction of the intestinal barrier during Salmonella infection. We found that SpvB enhanced the protein level of receptor-interacting protein kinase 3 (RIPK3) through inhibiting K48-linked poly-ubiquitylation of RIPK3 and the degradation of the protein in an autophagy-dependent manner. The abundant accumulation of RIPK3 upregulated the phosphorylation of MLKL, which contributed to necroptosis. The damage to IECs ultimately led to the disruption of the intestinal barrier and aggravated infection. In vivo, SpvB promoted the pathogenesis of Salmonella, favoring intestinal injury and colonic necroptosis. Our findings reveal a novel function of Salmonella effector SpvB, which could facilitate salmonellosis by promoting necroptosis, and broaden our understanding of the molecular mechanisms of bacterial invasion.

5.
Redox Biol ; 49: 102217, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942528

RESUMEN

Maintaining host iron homeostasis is an essential component of nutritional immunity responsible for sequestrating iron from pathogens and controlling infection. Nucleotide-oligomerization domain-like receptors (NLRs) contribute to cytoplasmic sensing and antimicrobial response orchestration. However, it remains unknown whether and how NLRs may regulate host iron metabolism, an important component of nutritional immunity. Here, we demonstrated that NLRP6, a member of the NLR family, has an unconventional role in regulating host iron metabolism that perturbs host resistance to bacterial infection. NLRP6 deficiency is advantageous for maintaining cellular iron homeostasis in both macrophages and enterocytes through increasing the unique iron exporter ferroportin-mediated iron efflux in a nuclear factor erythroid-derived 2-related factor 2 (NRF2)-dependent manner. Additional studies uncovered a novel mechanism underlying NRF2 regulation and operating through NLRP6/AKT interaction and that causes a decrease in AKT phosphorylation, which in turn reduces NRF2 nuclear translocation. In the absence of NLRP6, increased AKT activation promotes NRF2/KEAP1 dissociation via increasing mTOR-mediated p62 phosphorylation and downregulates KEAP1 transcription by promoting FOXO3A phosphorylation. Together, our observations provide new insights into the mechanism of nutritional immunity by revealing a novel function of NLRP6 in regulating iron metabolism, and suggest NLRP6 as a therapeutic target for limiting bacterial iron acquisition.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Infecciones por Salmonella , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hierro/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología
6.
Front Cell Infect Microbiol ; 11: 641412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816345

RESUMEN

Bacterial pathogens have a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to alter host inflammatory response and prolong intracellular bacterial survival. Salmonella enterica serovar Typhimurium utilizes a type III secretion system (T3SS) to deliver effector molecules into host cells and regulate signal transduction pathways such as NF-κB, thereby resulting in salmonellosis. SpvB, a pSLT-encoded cytotoxic protein secreted by Salmonella pathogenicity island-2 T3SS, is associated with enhanced Salmonella survival and intracellular replication. In this report, we characterized the effects of SpvB on NF-κB signaling pathway. We showed that SpvB has a potent and specific ability to prevent NF-κB activation by targeting IκB kinase ß (IKKß). Previous studies from our laboratory showed that SpvB decreases Nrf2 through its C-terminal domain. Here we further demonstrated that KEAP1, a cytoplasmic protein that interacts with Nrf2 and mediates its proteasomal degradation, is involved in SpvB-induced downregulation of IKKß expression and phosphorylation. Reduction of KEAP1 by small-interfering RNA prevented the suppression of IKKß and its phosphorylation mediated by SpvB. These findings revealed a novel mechanism by which Salmonella modulates NF-κB activity to ultimately facilitate intracellular bacterial survival and proliferation and delay host immune response to establish infection.


Asunto(s)
Quinasa I-kappa B , FN-kappa B , Regulación hacia Abajo , Quinasa I-kappa B/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , FN-kappa B/metabolismo
7.
Gut Microbes ; 13(1): 1-18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33475464

RESUMEN

Iron withholding, an essential component of nutritional immunity, plays a fundamental role in host resistance to Salmonella infection. Our previous study showed that SpvB, an important pSLT-encoded cytotoxic effector, facilitated Salmonella pathogenesis within macrophages via perturbing cellular iron metabolism. However, the underlying mechanisms of SpvB in Salmonella-relevant disorders of systemic iron metabolism have not yet been identified. Here, we demonstrated that SpvB facilitated Salmonella to scavenge iron from the host by modulating the hepcidin-ferroportin axis, a key regulator of systemic iron metabolism. We observed that SpvB enhanced hepatic hepcidin synthesis in a STAT3-dependent manner, but not the BMP/SMAD pathway. This subsequently resulted in a reduction of the unique cellular iron exporter ferroportin, which facilitated hypoferremia and hepatic iron accumulation and ultimately countered the limitation of iron availability, thereby improving the chances of Salmonella survival and replication. Moreover, SpvB promoted the production of proinflammatory molecules associated with the infiltration of inflammatory cells via highly upregulating TREM-1 signaling. Our data supported a role of TREM-1 in SpvB-related dysregulation of host iron metabolism and suggested that targeting TREM-1 might provide a potential therapeutic strategy to prevent or alleviate Salmonella pathogenesis.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella/patogenicidad , Factores de Virulencia/metabolismo , ADP Ribosa Transferasas/genética , Animales , Hepatocitos/metabolismo , Hepcidinas/genética , Humanos , Inflamación , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Ratones , Factor de Transcripción STAT3/metabolismo , Infecciones por Salmonella/microbiología , Transducción de Señal , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Factores de Virulencia/genética
8.
Front Cell Infect Microbiol ; 10: 606541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392110

RESUMEN

Salmonella are common enteric bacterial pathogens that infect both humans and animals. Intestinal epithelial barrier, formed by a single layer of epithelial cells and apical junctional complex (AJC), plays a crucial role in host defense against enteric pathogens to prevent bacterial translocation. However, the underlying mechanisms of intestinal epithelial barrier dysfunction caused by Salmonella are poorly understood. It is found that a locus termed Salmonella plasmid virulence (spv) gene exists extensively in clinically important Salmonella serovars. SpvB is a key effector encoded within this locus, and closely related to Salmonella pathogenicity such as interfering with autophagy and iron homeostasis. To investigate the interaction between SpvB and intestinal epithelial barrier and elucidate the underlying molecular mechanism, we used the typical foodborne disease agent Salmonella enterica serovar Typhimurium (Salmonella typhimurium) carrying spvB or not to construct infection models in vivo and in vitro. C57BL/6 mice were orally challenged with S. typhimurium wild-type strain SL1344 or spvB-deficient mutant strain SL1344-ΔspvB. Caco-2 cell monolayer model, as a widely used model to mimic the human intestinal epithelium in vitro, was infected with SL1344, SL1344-ΔspvB, or spvB complementary strain SL1344-c-ΔspvB, respectively. The results showed that SpvB enhanced bacterial pathogenicity during S. typhimurium infection in vivo, and contributed to intestinal epithelial barrier dysfunction in both infection systems. This SpvB-mediated barrier dysfunction was attributed to the cellular redistribution of Claudin-1, Occludin, and E-cadherin junctional proteins. Moreover, by using pharmacological inhibitors, we found that F-actin rearrangement and suppression of protein kinase C (PKC) signaling pathway were involved in SpvB-mediated barrier dysfunction. In conclusion, the study reveals the contribution of Salmonella effector SpvB to the dysfunction of intestinal epithelial barrier integrity, which facilitates bacterial translocation via the paracellular route to promote Salmonella systemic dissemination. Our findings broaden the understanding of host-pathogen interactions in salmonellosis, and provide new strategies for the therapy in limiting bacterial dissemination during infection.


Asunto(s)
Infecciones por Salmonella , Factores de Virulencia , ADP Ribosa Transferasas , Animales , Proteínas Bacterianas/genética , Traslocación Bacteriana , Células CACO-2 , Humanos , Mucosa Intestinal , Ratones , Ratones Endogámicos C57BL
9.
FASEB J ; 33(12): 13450-13464, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31569998

RESUMEN

Iron is a necessary nutrient for humans and nearly all bacterial species. During Salmonella infection, macrophages limit the availability of iron to intracellular pathogens in one of the central components of nutritional immunity. However, Salmonella also have mechanisms to interfere with the antimicrobial effect of host iron withdrawal and meet their own nutrient requirements by scavenging iron from the host. Here, we provide what is, to our knowledge, the first report that SpvB, a pSLT-encoded cytotoxic protein whose function is associated with the intracellular stage of salmonellosis, perturbs macrophage iron metabolism, thereby facilitating Salmonella survival and intracellular replication. In investigating the underlying mechanism, we observed that the Salmonella effector SpvB down-regulated nuclear factor erythroid-derived 2-related factor 2 (NRF2), and its C-terminal domain was necessary and sufficient for NRF2 degradation via the proteasome pathway. Decreased NRF2 expression in the nucleus resulted in a decrease in its transcriptional target ferroportin, encoding the sole macrophage iron exporter, thus ultimately decreasing iron efflux and increasing the intracellular iron content. Additionally, SpvB contributes to the pathogenesis of Salmonella including severe serum hypoferremia, increased splenic and hepatic bacterial burden, and inflammatory injury in vivo. Together, our observations uncovered a novel contribution of SpvB to Salmonella pathology via interference with host intracellular iron metabolism.-Yang, S., Deng, Q., Sun, L., Dong, K., Li, Y., Wu, S., Huang, R. Salmonella effector SpvB interferes with intracellular iron homeostasis via regulation of transcription factor NRF2.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Anemia Ferropénica/patología , Homeostasis , Hierro/metabolismo , Macrófagos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Infecciones por Salmonella/patología , Salmonella typhimurium , Factores de Virulencia/metabolismo , ADP Ribosa Transferasas/genética , Anemia Ferropénica/metabolismo , Anemia Ferropénica/microbiología , Animales , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica , Humanos , Deficiencias de Hierro , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Bazo/metabolismo , Bazo/microbiología , Bazo/patología , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA