Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39221488

RESUMEN

The separation of heavy-metal-contaminated soil by particle size is crucial for minimising the volume of contaminated soil because of the pronounced variability in the heavy-metal distribution among different soil particle sizes. However, relevant analyses on the effect of soil particle size sorting on stabilisation are limited. Therefore, we screened 2766 peer-reviewed papers published from January 2010 to April 2022 in the Web of Science database, of which 117 met the screening requirements, and conducted a meta-analysis to explore how soil particle size sorting and the interaction between sorting particle size and soil properties affect the stabilisation of heavy metals. The results showed that: (1) For fractionations ≤0.15 mm and from 0.15-2 mm, the materials demonstrating the highest average unit stabilisation efficiency were phosphate (45.0%/%) and organic matter (59.5%/%), respectively. (2) The smaller the size of soil particles, the greater the effect of the initial pH on stabilisation efficiency. (3) Similarly, for soil organic matter, smaller particle sizes (≤0.15 mm) combined with a lower initial content (≤1%) significantly increased the heavy metal stabilisation efficiency. (4) The impact of soil particle size fractionation on unit stabilisation efficiency was observed to be similar for typical heavy metals, specifically Cd and Pb. The relationship between particle size and unit stabilisation efficiency shows an inverted U shape. Particle size sorting can affect the distribution of heavy metals, but the type of stabilisation agent should also be considered in combination with the soil properties and heavy metal types.

2.
J Environ Manage ; 368: 122239, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39182380

RESUMEN

Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 µM) to minimize the toxic effect of Cr (100 µM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.


Asunto(s)
Antioxidantes , Clorofila , Nanopartículas , Oryza , Oryza/efectos de los fármacos , Oryza/genética , Antioxidantes/metabolismo , Clorofila/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Óxidos/toxicidad , Peróxido de Hidrógeno/metabolismo , Compuestos de Calcio/toxicidad , Cromo/toxicidad , Biodegradación Ambiental , Contaminantes del Suelo/toxicidad , Malondialdehído/metabolismo
3.
Neural Netw ; 180: 106658, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39208466

RESUMEN

In this work, the exponential synchronization issue of stochastic complex networks with time delays and time-varying multi-links (SCNTM) is discussed via a novel aperiodic intermittent dynamic event-triggered control (AIDE-TC). The AIDE-TC is designed by combining intermittent control with an exponential function and dynamic event-triggered control, aiming to minimize the number of the required triggers. Then, based on the proposed control strategy, the sufficient conditions for exponential synchronization in mean square of SCNTM are obtained by adopting graph theoretic approach and Lyapunov function method. In the meanwhile, it is proven that the Zeno behavior can be excluded under the AIDE-TC, which ensures the feasibility of the control mechanism to realize the synchronization of SCNTM. Finally, we provide a numerical simulation on islanded microgrid systems to validate the effectiveness of main results and the simulation comparison results show that the AIDE-TC can reduce the number of event triggers.

4.
Genomics ; 116(5): 110921, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173892

RESUMEN

Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (Myom3), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the Myom3 gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of Myom3 in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (Pax7) and myogenic regulatory factors (MRFs; Myf5, Myod1, Myog, P < 0.01), a significant decrease in the EdU-positive cell rate (P < 0.05), and a significant increase in the cell apoptosis rate (P < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of Myom3 resulted in significant downregulation of the Pax7 gene, upregulation of MRFs (Myod1, Myog, P < 0.05), and a significant increase in fusion index (P < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the Myom3 interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of Myom3 inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, Myom3 has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.

5.
Micromachines (Basel) ; 15(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39203676

RESUMEN

To enhance the performance of tubular microbubble generators, the Volume of Fluid (VOF) multiphase flow model in COMSOL Multiphysics was used to simulate the bubble fragmentation characteristics within a throttling hole microbubble generator. The effects of the inlet speed of the throttling hole pipe, the diameter of the throttling hole, and the length of the expansion section on bubble fragmentation performance were analyzed. The results indicated that an increase in the inlet speed of the throttling hole pipe gradually improved the bubble fragmentation performance. However, an increase in the throttling hole diameter significantly reduced the bubble fragmentation performance. Changes in the length of the expansion section had a minor impact on the bubble fragmentation performance. Experimental methods were used to verify the characteristics of bubble fragmentation, and it was found that the simulation and experimental results were consistent. This provides a theoretical basis and practical guidance for the design optimization of tubular microbubble generators.

6.
J Cell Physiol ; : e31385, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030845

RESUMEN

This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/ß-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/ß-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/ß-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.

7.
Langmuir ; 40(26): 13446-13457, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38877986

RESUMEN

Efficient charge carrier transport characteristics are critical to achieving the excellent performance of metal-oxide semiconductor gas sensors. Herein, SnO2/CeO2 heterojunction layered nanosheets with abundant oxygen vacancies were successfully synthesized through a simple solvothermal assisted high-temperature calcination method. The synergistic effect of oxygen vacancies and heterojunctions promoting the charge carrier transport properties at the SnO2/CeO2 interface for the enhanced sensing properties of triethylamine (TEA) was highlighted. As a result, the optimized SnO2/CeO2 exhibits improved gas sensing performance at 173 °C to 50 ppm of TEA. These include high response (205), excellent selectivity, low detection limit, and good long-term stability. This enhanced gas sensing property of SnO2/CeO2 is mainly attributed to the fact that the heterojunction and oxygen vacancies act as dual active sites synergistically inducing electron transfer, thereby effectively modulating the transport properties of the interfacial charge carriers, and thus facilitate the surface reactions efficiently. In this work, the dual-engineering strategy of synergistic interaction of heterojunction and oxygen vacancies can provide new perspectives for the design of advanced gas sensing materials.

8.
Front Plant Sci ; 15: 1421207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933462

RESUMEN

Introduction: Autotetraploid rice holds high resistance to abiotic stress and substantial promise for yield increase, but it could not be commercially used because of low fertility. Thus, our team developed neo-tetraploid rice with high fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite these advances, the molecular mechanisms underlying this heterosis remain poorly understood. Methods: An elite indica autotetraploid rice line (HD11) was used to cross with neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to observe endosperm structure and identify candidate genes from two represent hybrids. Results and discussion: These hybrids showed high seed setting and an approximately 55% increase in 1000-grain weight, some of which achieved grain yields comparable to those of the diploid rice variety. The endosperm observations indicated that the starch grains in the hybrids were more compact than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs) with different expressions were identified, which might contribute to high 1000-grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had been found to regulate grain weight formation, including OsFl3, ONAC023, OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various effects on grain weight among different haplotypes. The hybrids could polymerize more dominant haplotypes of above grain weight regulators than any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants displayed a significant reduction in 1000-grain weight and an increase in grain chalkiness, indicating that OsFl3 and SHRG2 positively regulate grain weight. Our research has identified a valuable indica autotetraploid germplasm for generating strong yield heterosis in combination with neo-tetraploid lines and gaining molecular insights into the regulatory processes of heterosis in tetraploid rice.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38843423

RESUMEN

Objective: This study aimed to compare the direct medication costs and clinical effectiveness of using remimazolam versus midazolam for goal-guided sedation therapy in the ICU patients. Methods: This randomized controlled study was conducted in the ICU of People's Hospital Affiliated to Shandong First Medical University. Eighty adult patients admitted to the ICU and requiring sedation were enrolled and randomly assigned in a 1:1 ratio to receive either remimazolam-based sedation (study group, n=40) or midazolam-based sedation (control group, n=40). The inclusion criteria for patient selection were age 18-80 years, requirement for mechanical ventilation, and an expected ICU stay of at least 24 hours. Patients with significant liver or kidney dysfunction, neurological disorders, or contraindications to the study drugs were excluded. The target sedation depth for both groups was a Ramsay Sedation Scale score of 3-4, which was maintained by titrating the infusion rates of remimazolam or midazolam as needed. Vital signs, sedation scores, and respiratory parameters were closely monitored throughout the sedation period. Results: The time to onset of sedation, time to reach the target sedation depth, time to awakening, and length of ICU stay were all significantly shorter in the remimazolam group compared to the midazolam group (P < .05 for all). The remimazolam group had a mean time to onset of 5.2 ± 1.8 minutes versus 8.9 ± 2.4 minutes in the midazolam group. The mean time to reach the target Ramsay Sedation Scale score of 3-4 was 12.6 ± 3.1 minutes in the remimazolam group compared to 18.4 ± 4.2 minutes in the midazolam group. The mean time to awakening was 10.2 ± 2.7 minutes in the remimazolam group versus 16.5 ± 3.9 minutes in the midazolam group. The remimazolam group also had a significantly shorter mean ICU length of stay of 5.1 ± 1.3 days compared to 7.8 ± 2.1 days in the midazolam group (P < .01). The remimazolam group had a significantly higher metabolic clearance rate compared to the midazolam group (P < .001). The Ramsay sedation scores and Wong-Baker FACES pain scores were also significantly lower in the remimazolam group throughout the sedation period (P < .01). There were no significant differences in heart rate between the two groups at any timepoint. However, the overall incidence of adverse events was significantly lower in the remimazolam group compared to the midazolam group (P < .05). Conclusion: This study demonstrated that the use of remimazolam-based goal-directed sedation in the ICU setting resulted in significantly faster onset of action, quicker achievement of the target sedation depth, shorter time to awakening, and shorter ICU length of stay compared to midazolam-based sedation. The remimazolam group also had a higher metabolic clearance rate, lower sedation and pain scores, and a lower incidence of adverse events.These findings suggest that remimazolam may provide advantages over midazolam for ICU sedation, potentially leading to improved patient comfort, more efficient utilization of ICU resources, and potentially better clinical outcomes. The rapid onset, titratability, and favorable safety profile of remimazolam make it a promising sedative agent that could help optimize sedation practices in the critical care setting. Further research is warranted to fully evaluate the impact of remimazolam on long-term patient-centered outcomes and overall healthcare costs in the ICU.

10.
Diabetes Metab Syndr Obes ; 17: 1749-1760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645655

RESUMEN

Purpose: To study the relationship between the single nucleotide polymorphism (SNP) rs2278426 in the angiopoietin-like protein 8 gene (ANGPTL8) and polycystic ovary syndrome (PCOS). Patients and methods: A total of 122 patients with PCOS and 108 controls were recruited for comparison of glucose, lipid, insulin, sex hormone, and ANGPTL8 levels. Polymerase chain reaction (PCR) and gene sequencing were performed for comparison of the frequency of the CC, CT, and TT rs2278426 genotypes and the rs2278426 allele distributions between the PCOS and control groups and between the obese and non-obese subgroups of the PCOS and control groups. Results: The frequency of the T allele was significantly higher in the PCOS group than that in the controls (P = 0.037). In the dominant genetic model, the proportion of the CT+TT genotype in the PCOS group was significantly higher than that in the controls (P = 0.047). Subgroup analysis demonstrated that the T allele proportion was significantly higher in obese PCOS group than obese control group (P = 0.027). PCOS with the CT+TT genotype had significantly higher body mass index (BMI; P = 0.001), triglyceride (TG; P = 0.005), homeostasis model assessment of insulin resistance (HOMA-IR; P = 0.035), testosterone (P = 0.041), and ANGPTL8 (P = 0.037) levels and significantly lower high-density lipoprotein (HDL) levels (P = 0.025) than PCOS with the CC genotype. Obese PCOS group with the CT+TT genotype had significantly higher TG (P = 0.015), luteinizing hormone (LH; P = 0.030), fasting insulin (FINS; P = 0.039), HOMA-IR (P = 0.018), and ANGPTL8 (P = 0.049) levels than obese PCOS group with the CC genotype. Conclusion: Polymorphisms of rs2278426 may induce glycolipid metabolic disorders by affecting ANGPTL8 levels and functions in Han Chinese females with obesity from the Shandong region, increasing the risk of PCOS in this population.

12.
Chin J Nat Med ; 22(3): 224-234, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38553190

RESUMEN

The role of NF-κB and the NLRP3 inflammasome in the chronic inflammatory microenvironment of non-alcoholic steatohepatitis (NASH) has been posited as crucial. The Yanggan Jiangmei Formula (YGJMF) has shown promise in ameliorating hepatic steatosis in NASH patients, yet its pharmacological mechanisms remain largely unexplored. This study was conducted to investigate the efficacy of YGJMF in NASH and to elucidate its pharmacological underpinnings. To simulate NASH both in vivo and in vitro, high-fat-diet (HFD) rats and HepG2 cells stimulated with free fatty acids (FFAs) were utilized. The severity of liver injury and lipid deposition was assessed using serum indicators, histopathological staining, micro-magnetic resonance imaging (MRI), and the liver-to-muscle signal intensity ratio (SIRL/M). Furthermore, a combination of enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), immunofluorescence, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting analyses was employed to investigate the NF-κB/NLRP3 signaling pathway and associated cytokine levels. The results from liver pathology, MRI assessments, and biochemical tests in rat models demonstrated YGJMF's significant effectiveness in reducing liver damage and lipid accumulation. Additionally, YGJMF markedly reduced hepatocyte inflammation by downregulating inflammatory cytokines in both liver tissue and serum. Furthermore, YGJMF was found to disrupt NF-κB activation, consequently inhibiting the assembly of the NLRP3 inflammasome in both the in vitro and in vivo models. The preliminary findings of this study suggest that YGJMF may alleviate hepatic steatosis and inhibit the NF-κB/NLRP3 signaling pathway, thereby exerting anti-inflammatory effects in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratas , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas , Hígado , Transducción de Señal , Inflamación/metabolismo , Lípidos , Ratones Endogámicos C57BL
13.
Sci Rep ; 14(1): 5986, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472251

RESUMEN

Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.


Asunto(s)
Nanopartículas , Oryza , Contaminantes del Suelo , Oryza/genética , Silicio/farmacología , Plomo/metabolismo , Hierro/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Contaminantes del Suelo/metabolismo
15.
J Hazard Mater ; 465: 133461, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211526

RESUMEN

This study combined process simulation and actual measurement to construct a multipath diffusion and spatial accumulation model of Cd in a typical lead-zinc mining area through accuracy and root mean square error(RMSE) analysis. The results indicated that (1) the diffusion of Cd was in a quadratic inverse proportional relationship with the distance from the pollution source within watershed. The average annual atmospheric Cd sedimentation in study area was 0.71 * 10-6 g and the contribution of runoff diffusion to Cd exceeded 80%. (2) With the increase in the concentration range of Cd content (k) carried by unit runoff sediment, the model accuracy and RMSE showed decreasing trends. However, when the lower and upper limits of k were 10% and 90%, the model accuracy reached 75%. (3) Two sub-watersheds with same dominant wind direction but different runoff directions were selected to verify the model accuracy, indicating that the model construction method can precisely simulate the spatial accumulation of Cd in similar mining areas. The results provide a scientific basis for the prevention of heavy metal diffusion in lead-zinc mines. Future research should focus on the migration pathways of heavy metals through vertical infiltration caused by rainfall to further optimise the model structure and accuracy.

17.
Inflammopharmacology ; 32(2): 1113-1131, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114798

RESUMEN

BACKGROUND: Sjögren's Syndrome (SS) is also known as autoimmune exocrine gland disease. Previous studies have confirmed that adaptive immunity plays an important role in the development of this disease. But less is known about the role of the innate immune system. METHODS: To identify the core pathways, and local infiltrated immune cells in the local immune microenvironment of SS. We verified the activation of these core genes and core signaling pathways in SS model mice by in vivo experiment and transcriptome sequencing. RESULTS: Finally, we identified 6 core genes EPSTI1, IFI44L, MX1, CXCL10, IFIT3, and IFI44. All the 6 genes had good diagnostic value. Based on multi-omics sequencing results and experimental studies, we found that cGAS-STING signaling pathway is most relevant to the pathogenesis of SS. By in vivo experiments, we verified that autophagy is the key brake to limit the activation of cGAS-STING signaling pathway. CONCLUSIONS: Maladaptive activation of autophagy and cGAS-STING signaling pathway are central contributors to the SG pathogenesis of pSS patient. Regulating autophagy by rapamycin may be a possible treatment for Sjögren's syndrome in the future.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Sjögren , Humanos , Ratones , Animales , Síndrome de Sjögren/tratamiento farmacológico , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Sirolimus , Transducción de Señal , Nucleotidiltransferasas/metabolismo
18.
J Inflamm Res ; 16: 5393-5402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026237

RESUMEN

Purpose: Inflammation plays a critical role in the development of cardiac conduction block (CCB), which is associated with an increased risk of morbidity and mortality. The monocyte-lymphocyte ratio (MLR) acts as a novel inflammatory marker; however, its association with CCB has not yet been studied. This study aimed to investigate the association between MLR and CCB risk. Patients and Methods: In total, 82,472 CCB-free participants were identified from the Kailuan study. MLR was calculated using the monocyte count/lymphocyte count. The participants were stratified based on quartiles of MLR levels. Incident CCB and its subtypes were ascertained from electrocardiograms at biennial follow-up visits. The Cox proportional hazards model and restricted cubic spline analysis were used to investigate the association between MLR with CCB and its subtypes. Results: During a median follow-up of 10.4 years, 3222 incident CCB cases were observed. A U-shaped association was observed between MLR and CCB risk (Pnonlinearity <0.05). After multivariate adjustment, individuals in the highest MLR quartile had a hazard ratio (HR) of 1.212 (95% CI: 1.097-1.340; Q4 vs Q2), while those in the lowest MLR quartile had an HR of 1.106 (95% CI: 1.000-1.224; Q1 vs Q2). Sensitivity and subgroup analyses yielded consistent results. The U-shaped association persisted for atrioventricular block (AVB) in subtype analyses. Conclusion: MLR was significantly associated with an increased risk of new-onset CCB. Assessing MLR may have clinical relevance for predicting CCB risk, providing valuable insights for preventive strategies and patient management. Pre-Registered Clinical Trial Number: The pre-registered clinical trial number is ChiCTR-TNC-11001489.

19.
Risk Manag Healthc Policy ; 16: 1455-1465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575684

RESUMEN

Purpose: Many studies have reported that exposure to air pollution increases the likelihood of acquiring allergic rhinitis (AR). This study investigated associations between short-term air pollution exposure and AR outpatient visits. Patients and Methods: The Department of Otorhinolaryngology, Affiliated Hospital of Hangzhou Normal University provided AR outpatient data from January 1, 2019 to December 31, 2021. Daily air quality information for that period was gathered from the Hangzhou Air Quality Inspection Station. We used the Poisson's generalized additive model (GAM) to investigate relationships between daily outpatient AR visits and air pollution, and investigated lag-exposure relationships across days. Subgroup analyses were performed by age (adult (>18 years) and non-adult (<18 years)) and sex (male and female). Results: We recorded 20,653 instances of AR during the study period. Each 10 g/m3 increase in fine particulate matter (PM10 and PM2.5) and carbon monoxide (CO) concentrations was associated with significant increases in AR outpatient Visits. The relative risks (RR) were: 1.007 (95% confidence interval (CI): 1.001-1.013), 1.026 (95% CI: 1.008-1.413), and 1.019 (95% CI: 1.008-1.047). AR visits were more likely due to elevated PM2.5, PM10, and CO levels. Additionally, children were more affected than adults. Conclusion: To better understand the possible effects of air pollution on AR, short-term exposure to ambient air pollution (PM2.5, PM10, and CO) may be linked to increased daily outpatient AR visits.

20.
Clin Exp Pharmacol Physiol ; 50(10): 806-814, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452725

RESUMEN

Filtration surgery is commonly performed for glaucoma treatment to reduce intraocular pressure (IOP); however, scarring of the filtering bleb is the main cause of failure. In this study, we evaluated the effects of the chloride channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) on scar formation in filtering blebs. A glaucoma filtering surgery model was generated using Sprague-Dawley rats, divided into the control and NPPB groups receiving injections of different NPPB concentrations. The IOP of all rats decreased 1-day post-surgery and gradually increased afterward. However, IOP in rats from the NPPB groups recovered more slowly than that of the control group rats. In addition, the area and survival times of filtering blebs in rats from the NPPB groups were substantially larger and longer than those in the control group. Twenty-eight days after surgery, the protein and mRNA expression of collagen I, fibronectin and α-smooth muscle actin in the filtering area of rats from the NPPB groups were significantly lower than that in the control group rats. Collectively, our study demonstrates that NPPB inhibits filtering bleb scar formation, maintains filtering bleb morphology and prolongs filtering bleb survival time by inhibiting the differentiation of conjunctival fibroblasts and extracellular matrix synthesis.


Asunto(s)
Cicatriz , Glaucoma , Ratas , Animales , Cicatriz/prevención & control , Cloruros , Ratas Sprague-Dawley , Glaucoma/cirugía , Presión Intraocular , Canales de Cloruro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...