Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38931988

RESUMEN

This study investigates viscoelastic guided wave properties (e.g., complex-wavenumber-, phase-velocity-, and attenuation-frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency-dependent relations, a guided wave characteristic equation is formulated based on a Legendre orthogonal polynomials expansion (LOPE)-assisted viscoelastodynamic model, which fuses the hysteretic viscoelastic model-based wave dynamics and the LOPE-based mode shape approximation. Then, the complex-wavenumber-frequency solutions are obtained by solving the characteristic equation using an improved root-finding algorithm, which leverages coefficient matrix determinant ratios and our proposed local tracking windows. To trace the solutions on the dispersion curves of different wave modes and avoid curve-tracing misalignment in regions with phase-velocity curve crossing, we presented a curve-tracing strategy considering wave attenuation. With the LOPE-assisted viscoelastodynamic model, the effects of material viscosity and fiber orientation on different guided wave modes are investigated for unidirectional carbon-fiber-reinforced composites. The results show that the viscosity in the hysteresis model mainly affects the frequency-dependent attenuation of viscoelastic guided waves, while the fiber orientation influences both the phase-velocity and attenuation curves. We expect the theoretical work in this study to facilitate the development of guided wave-based techniques for the NDT and SHM of viscoelastic anisotropic laminated composites.

2.
Med Eng Phys ; 124: 104060, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38418032

RESUMEN

On the basis of extracting mechanomyography (MMG) signal features, the classification of hand movements has certain application values in human-machine interaction systems and wearable devices. In this paper, pattern recognition of hand movements based on MMG signal is studied with swarm intelligence algorithms introduced to optimize support vector machine (SVM). Time domain (TD) features, wavelet packet node energy (WPNE) features, frequency domain (FD) features, convolution neural network (CNN) features were extracted from each channel to constitute different feature sets. Three novel swarm intelligence algorithms (i.e., bald eagle search (BES), sparrow search algorithm (SSA), grey wolf optimization (GWO)) optimized SVM is proposed to train the models and recognition of hand movements are tested for each MMG feature extraction method. Using GWO as the optimization algorithm, time consumption is less than using the other two swarm algorithms. Using GWO with TD+FD features can obtain the classification accuracy of 93.55 %, which is higher than other methods while using CNN to extract features can be independent of domain knowledge. The results confirm GWO-SVM with TD + FD features is superior to some other methods in the classification problem for tiny samples based on MMG.


Asunto(s)
Algoritmos , Máquina de Vectores de Soporte , Humanos , Redes Neurales de la Computación , Inteligencia , Aceleración
3.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571722

RESUMEN

Pattern recognition of lower-limb movements based on mechanomyography (MMG) signals has a certain application value in the study of wearable rehabilitation-training devices. In this paper, MMG feature selection methods based on a chameleon swarm algorithm (CSA) and a grasshopper optimization algorithm (GOA) are proposed for the pattern recognition of knee and ankle movements in the sitting and standing positions. Wireless multichannel MMG acquisition systems were designed and used to collect MMG movements from four sites on the subjects thighs. The relationship between the threshold values and classification accuracy was analyzed, and comparatively high recognition rates were obtained after redundant information was eliminated. When the threshold value rose, the recognition rates from the CSA fluctuated within a small range: up to 88.17% (sitting position) and 90.07% (standing position). However, the recognition rates from the GOA drop dramatically when increasing the threshold value. The comparison results demonstrated that using a GOA consumes less time and selects fewer features, while a CSA gives higher recognition rates of knee and ankle movements.


Asunto(s)
Tobillo , Rodilla , Humanos , Movimiento , Algoritmos , Inteligencia
4.
Materials (Basel) ; 16(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903160

RESUMEN

Nonlinear guided elastic waves have attracted extensive attention owing to their high sensitivity to microstructural changes. However, based on the widely used second harmonics, third harmonics and static components, it is still difficult to locate the micro-defects. Perhaps the nonlinear mixing of guided waves can solve these problems since their modes, frequencies and propagation direction can be flexibly selected. Note that the phenomena of phase mismatching usually occur due to the lack of precise acoustic properties for the measured samples, and they may affect the energy transmission from the fundamental waves to second-order harmonics as well as reduce the sensitivity to micro-damage. Therefore, these phenomena are systematically investigated to more accurately assessing the microstructural changes. It is theoretically, numerically, and experimentally found that the cumulative effect of difference- or sum-frequency components will be broken by the phase mismatching, accompanied by the appearance of the beat effect. Meanwhile, their spatial periodicity is inversely proportional to the wavenumber difference between fundamental waves and difference- or sum-frequency components. The sensitivity to micro-damage is compared between two typical mode triplets that approximately and exactly meet the resonance conditions, and the better one is utilized for assessing the accumulated plastic deformations in the thin plates.

5.
Ultrasonics ; 108: 106180, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32526527

RESUMEN

This paper derives the resonance conditions for one-way resonant mixing of nonlinear Lamb waves. Two mode triplets are identified that satisfy such resonance conditions. It is also found that, when the primary waves are pulses of finite duration, the signal envelope of the corresponding resonant mixed wave is either a diamond or an elongated hexagon. The dimensions of these shapes are obtained explicitly in terms of the pulse lengths and group velocities of the Lamb modes in the mode triplet. These analytical results are verified by numerical simulations using the finite element method. Finally, a nondestructive evaluation method based on one-way mixing of Lamb waves is proposed for the inspection of a large area of a plate for damage distribution via a single access point. Numerical simulations of this nondestructive evaluation technique are conducted. It is found that using shorter pulses gives better spatial resolution, thus better suited for locating and sizing the damage zone, while using longer pulses gives a higher signal to noise ratio, thus better suited for quantifying the degree of damage in the damage zone. Results of this paper clarify some of the confusion in the existing literature regarding the resonance conditions for one-way mixing of nonlinear Lamb waves. They also provide a better understanding of the physical characteristics of the resonant mixed wave. Such understanding enables the design of optimal measurement systems for one-way mixing of Lamb waves for the purpose of conducting large area nondestructive evaluation of plate-like structures from a single access point. This proposed one-way mixing nondestructive evaluation technique can be extended to pipes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...