Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2311432, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191132

RESUMEN

Sodium layered-oxides (Nax TMO2 ) sustain severe interfacial stability issues when subjected to battery applications. Particularly at high potential, the oxidation limits including transition metal dissolution and SEI reformation are intertwined upon the cathode, resulting in poor cycle ability. Herein, by rearranging the complex and structure of Helmholtz absorption plane adjacent to Nax TMO2 cathodes, the mechanism of constructing stable cathode/electrolyte interphase to push up oxidation limits is clarified. The strong absorbent fluorinated anions replace the solvents into the inner Helmholtz plane, thereby reorganizing the Helmholtz absorption structure and spontaneously inducing an anion-dominated interphase to envelop more active sites for layered oxides. More importantly, such multi-component cathode/electrolyte interphase proves effective for long-term durability of a series of manganese-based oxide cathodes, which achieves 1500-cycles lifetime against high oxidation voltage limit beyond 4.3 V. This work unravels the key role of breaking high-oxidation limits in attaining higher energy density of layered-oxide systems. This article is protected by copyright. All rights reserved.

2.
Angew Chem Int Ed Engl ; 61(48): e202213416, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36198654

RESUMEN

Constructing stable electrode/electrolyte interphase with fast interfacial kinetics is vital for fast-charging batteries. Herein, we investigate the interphase that forms between a high-voltage Na3 V2 (PO4 )2 F3 cathode and the electrolytes consisting of 3.0, 1.0, or 0.3 M NaClO4 in an organic carbonate solvent (47.5 : 47.5 : 5 mixture of EC: PC: FEC) during charging up to 4.5 V at 55 °C. It is found that a higher anion/solvent ratio in electrolyte solvation structure induces anion-dominated interphase containing more inorganic species and more anion derivatives (Cx ClOy ), which leads to a larger interfacial Na+ transport resistance and more unfavorable gas evolution. In comparison, a low anion/solvent ratio derives stable anion-tuned interphase that enables better interfacial kinetics and cycle ability. Importantly, the performance of a failed cathode is restored by triggering the decomposition of Cx ClOy species. This work elucidates the role of tuning interphase in fast-charging batteries.

3.
J Colloid Interface Sci ; 622: 135-146, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35490617

RESUMEN

The nanostructured antimicrobial agents, self-assembled by the antimicrobial peptides (AMPs), represent an intriguing platform for the treatment of pathogens. Although the structural characteristics significantly influence antimicrobial functionality, the role of chirality is usually ignored and still unclear. Herein, two homochiral AMPs (all L- or all D-amino acids), including C16-LV4LR4 (LL) and C16-DV4DR4 (DD), and a heterochiral AMP with alternating D-/L-amino acids, C16-DV4LR4 (DL), were self-assembled into left-handed, right-handed, and right-handed helical nanofibers, respectively. The valine configuration determined the supramolecular chirality of the nanofibers. However, the DL molecules exhibited a highly aggregated propensity to form more stable helical nanofibers with a lower degree of twist and a larger helical pitch. This characteristic resulted in the optimal antimicrobial activity of the DL nanofibers against both Gram-negative and Gram-positive bacteria. Furthermore, the membrane permeability assay confirmed the higher activity for damaging the cell membrane by the DL nanofibers. These results demonstrated the significance of molecular chirality in directing the self-assembly of the amphiphilic peptides, eventually affecting their antimicrobial activity. This study opens up the possibility to fabricate promising nanostructured antimicrobial materials by controlling the chirality and structure of the materials.


Asunto(s)
Nanofibras , Nanoestructuras , Aminoácidos/química , Antibacterianos/química , Antibacterianos/farmacología , Nanofibras/química , Péptidos/química
4.
Int J Biol Macromol ; 195: 59-66, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34871660

RESUMEN

Bacterial cellulose (BC) is a promising biopolymer, but its three-dimensional structure needs to be controllable to be used in multiple fields. BC has some advantages over other types of cellulose, not only in terms of purity and properties but also in terms of modification (in situ modification) during the synthesis process. Here, starches from different sources or with amylose/amylopectin content were added to the growth medium to regulate the structural properties of BC in-situ. The obtained BC membranes were further modified by superhydrophobic treatment for oil-water separation. Starches alter the viscosity of the medium, thus affecting bacterial motility and cellulose synthesis, and adhere to the microfibers, limiting their further polymerization and ultimately altering the membrane porosity, pore size, and mechanical properties perpendicular to the BC fibril layer direction. The average pore diameter of the BC/PS membrane increased by 1.94 times compared to the initial BC membrane. The chemically modified BC/PS membrane exhibited super-hydrophobicity (water contact angle 167°), high oil-water separation flux (dichloromethane, 23,205 Lm-2 h-1 MPa-1), high separation efficiency (>97%). The study provides a foundation for developing methods to regulate the network structure of BC and broaden its application.


Asunto(s)
Amilopectina/química , Amilosa/química , Bacterias/química , Celulosa/química , Plantas/química , Medios de Cultivo/química , Fermentación , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal , Microscopía Electrónica de Rastreo , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química
5.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30216977

RESUMEN

In conjunction with the classical functions of regulating intestinal, bone, and kidney calcium and phosphorus absorption, as well as bone mineralization of vitamin D, the population-based association between low vitamin D status and increased cancer risk is now generally accepted. Inflammation is causally related to oncogenesis. It is widely thought that vitamin D plays an important role in the modulation of the inflammation system by regulating the production of inflammatory cytokines and immune cells, which are crucial for the pathogenesis of many immune-related diseases. Mechanistic studies have shown that vitamin D influences inflammatory processes involved in cancer progression, including cytokines, prostaglandins, MAP kinase phosphatase 5 (MKP5), the nuclear factor kappa B (NF-κB) pathway, and immune cells. Multiple studies have shown that vitamin D has the potential to inhibit tumor development by interfering with the inflammation system. The present review summarizes recent studies of the mechanisms of vitamin D on regulating the inflammation system, which contributes to its potential for cancer prevention and therapy. This review helps answer whether inflammation mediates a causal relationship between vitamin D and tumorigenesis.


Asunto(s)
Antiinflamatorios/uso terapéutico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Vitamina D/uso terapéutico , Animales , Antiinflamatorios/inmunología , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Inflamación/prevención & control , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Vitamina D/inmunología
6.
Biochem Biophys Res Commun ; 450(4): 1568-74, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25026550

RESUMEN

The molecular basis for group I metabotropic glutamate receptors (mGluR1 and 5) coupling to membrane ion channels and intracellular calcium pools is not fully understood. Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. In the present study, we demonstrate that Homer1b/c is constitutively expressed in PC12 cells, whereas Homer1a, the immediate early gene product, can be up-regulated by brain derived neurotrophic factor (BDNF) and glutamate. Knockdown of Homer1b/c using specific target small interfering RNA (siRNA) did not interfere the expression of mGluR1, mGluR5 and their downstream effectors, including inositol-1,4,5-trisphosphate receptors (IP3R), phospholipase C (PLC) and Gq proteins. By analyzing Ca(2+) imaging in PC12 cells, we demonstrated that Homer1b/c is an essential regulator of the Ca(2+) release from the endoplasmic reticulum (ER) induced by the activation of group I mGluRs, IP3R and ryanodine receptors (RyR). Furthermore, the group I mGluRs activation-dependent refilling of the Ca(2+) stores in both resting and depolarizing conditions were strongly attenuated in the absence of Homer1b/c. Together, our results demonstrate that in PC12 cells Homer1b/c is a regulator of group I mGluRs related Ca(2+) homeostasis that is essential for the maintenance of normal Ca(2+) levels in the ER.


Asunto(s)
Señalización del Calcio , Proteínas Portadoras/metabolismo , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Proteínas de Andamiaje Homer , Células PC12 , Interferencia de ARN , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...