Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(22): 9078-9087, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38770734

RESUMEN

As an important disease biomarker, the development of sensitive detection strategies for miRNA, especially intracellular miRNA imaging strategies, is helpful for early diagnosis of diseases, pathological research, and drug development. Hybridization chain reaction (HCR) is widely used for miRNA imaging analysis because of its high specificity and lack of biological enzymes. However, the classic HCR reaction exhibits linear amplification with low efficiency, limiting its use for the rapid analysis of trace miRNA in living cells. To address this problem, we proposed a toehold-mediated exponential HCR (TEHCR) to achieve highly sensitive and efficient imaging of miRNA in living cells using ß-FeOOH nanoparticles as transfection vectors. The detection limit of TEHCR was as low as 92.7 fM, which was 8.8 × 103 times lower compared to traditional HCR, and it can effectively distinguish single-base mismatch with high specificity. The TEHCR can also effectively distinguish the different expression levels of miRNA in cancer cells and normal cells. Furthermore, TEHCR can be used to construct OR logic gates for dual miRNA analysis without the need for additional probes, demonstrating high flexibility. This method is expected to play an important role in clinical miRNA-related disease diagnosis and drug development as well as to promote the development of logic gates.


Asunto(s)
MicroARNs , Hibridación de Ácido Nucleico , MicroARNs/análisis , MicroARNs/metabolismo , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Compuestos Férricos/química
2.
Anal Chem ; 96(2): 910-916, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38171356

RESUMEN

Early tumor diagnosis is crucial to successful treatment. Earlier studies have shown that microRNA is a biomarker for early tumor diagnosis. The development of highly sensitive miRNA detection methods, especially in living cells, plays an indispensable role for early diagnosis and treatment of tumor. Although the catalytic hairpin assembly (CHA)-based miRNA analysis strategy is commonly used for disease diagnosis, further application of CHA is hindered due to its low amplification efficiency and low tumor recognition contrast. To address these limitations, we propose a dual-signal amplification strategy based on CHA and APE1-assisted amplification, enabling highly sensitive and high-contrast miRNA imaging. The miR-221 was selected as a target model. This dual-signal amplification strategy has exhibited high amplification efficiency, which could analyze miRNA as low as 21 fM. This strategy also exhibited high specificity, which could distinguish target miRNA and nontarget with single-base differences. Moreover, this method showed significant potential for practical application, as it could successfully distinguish the expression difference of miR-221 in the plasma samples of normal people and patients. Most importantly, the expression level of the APE1 enzyme in tumor cells is higher than that in normal cells, allowing this strategy to sensitively and specifically image miRNA within tumor cells. This proposed method has also been successfully used to indicate fluctuations of intracellular miRNA and to distinguish miRNA expression between normal cells and cancer cells with high contrast. We anticipate that this method will provide fresh insights and can be a powerful tool for tumor diagnosis and treatment based on miRNA analysis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , MicroARNs/análisis , Técnicas Biosensibles/métodos , Catálisis , Diagnóstico por Imagen , Límite de Detección
3.
Anal Chim Acta ; 1287: 342084, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182379

RESUMEN

BACKGROUND: Human 8-oxoG DNA glycosylase 1 (hOGG1) is one of the important members of DNA glycosylase for Base excision repair (BER), the abnormal activity of which can lead to the failure of BER and the appearance of various diseases, such as breast cancer, bladder cancer, Parkinson's disease and lung cancer. Therefore, it is important to detect the activity of hOGG1. However, traditional detection methods suffer from time consuming, complicated operation, high false positive results and low sensitivity. Thus, it remains a challenge to develop simple and sensitive hOGG1 analysis strategies to facilitate early diagnosis and treatment of the relative disease. RESULTS: A target-induced rolling circle amplification (TIRCA) strategy for label-free fluorescence detection of hOGG1 activity was proposed with high sensitivity and specificity. The TIRCA strategy was constructed by a hairpin probe (HP) containing 8-oxoG site and a primer probe (PP). In the presence of hOGG1, the HP transformed into dumbbell DNA probe (DDP) after the 8-oxoG site of which was removed. Then the DDP formed closed circular dumbbell probe (CCDP) by ligase. CCDP could be used as amplification template of RCA to trigger RCA. The RCA products containing repeated G4 sequences could combine with ThT to produce enhanced fluorescence, achieving label-free fluorescence sensing of hOGG1. Given the high amplification efficiency of RCA and the high fluorescence quantum yield of the G4/ThT, the proposed TIRCA achieved highly sensitive measurement of hOGG1 activity with a detection limit of 0.00143 U/mL. The TIRCA strategy also exhibited excellent specificity for hOGG1 analysis over other interference enzymes. SIGNIFICANCE: This novel TIRCA strategy demonstrates high sensitivity and high specificity for the detection of hOGG1, which has also been successfully used for the screening of inhibitors and the analysis of hOGG1 in real samples. We believe that this TIRCA strategy provides new insight into the use of the isothermal nucleic acid amplification as a useful tool for hOGG1 detection and will play an important role in disease early diagnosis and treatment.


Asunto(s)
ADN Glicosilasas , Humanos , Neoplasias de la Mama/diagnóstico , ADN Glicosilasas/química , Reparación por Escisión , Fluorescencia
4.
Talanta ; 269: 125465, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008022

RESUMEN

Developing simple, rapid and specific mRNA imaging strategy plays an important role in the early diagnosis of cancer and the new drugs development. Herein, we have established a novel binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. This developed system consisted of tetrahedron probe A (TPA) and tetrahedron probe B (TPB). TK1 mRNA was chosen as the study model. After TPA and TPB enter into the live cells, the TK1 mRNA induces TPA and TPB to approach and activate the fluorescent aptamer, resulting in enhanced fluorescent signal in the presence of small molecules of DFHBI-1T. By this design, the high specificity label-free detection of nucleic acids was achieved with a detection limit of 1.34 nM. Confocal fluorescence imaging experiments had proved that this strategy could effectively distinguish the TK1 mRNA expression level between normal cell and cancer cell. The developed method is expected to provide a new tool for early diagnosis of diseases and new drug development.


Asunto(s)
Aptámeros de Nucleótidos , ARN Mensajero/genética , Aptámeros de Nucleótidos/metabolismo , Colorantes Fluorescentes/metabolismo , ADN/genética , Imagen Óptica/métodos
5.
Nat Commun ; 14(1): 5541, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684223

RESUMEN

Zika virus (ZIKV) infection during pregnancy threatens pregnancy and fetal health. However, the infectivity and pathological effects of ZIKV on placental trophoblast progenitor cells in early human embryos remain largely unknown. Here, using human trophoblast stem cells (hTSCs), we demonstrated that hTSCs were permissive to ZIKV infection, and resistance to ZIKV increased with hTSC differentiation. Combining gene knockout and transcriptome analysis, we demonstrated that the intrinsic expression of AXL and TIM-1, and the absence of potent interferon (IFN)-stimulated genes (ISGs) and IFNs contributed to the high sensitivity of hTSCs to ZIKV. Furthermore, using our newly developed hTSC-derived trophoblast organoid (hTSC-organoid), we demonstrated that ZIKV infection disrupted the structure of mature hTSC-organoids and inhibited syncytialization. Single-cell RNA sequencing (scRNA-seq) further demonstrated that ZIKV infection of hTSC-organoids disrupted the stemness of hTSCs and the proliferation of cytotrophoblast cells (CTBs) and probably led to a preeclampsia (PE) phenotype. Overall, our results clearly demonstrate that hTSCs represent the major target cells of ZIKV, and a reduced syncytialization may result from ZIKV infection of early developing placenta. These findings deepen our understanding of the characteristics and consequences of ZIKV infection of hTSCs in early human embryos.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Embarazo , Humanos , Femenino , Trofoblastos , Placenta , Organoides
6.
Anal Chem ; 95(40): 15025-15032, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37769140

RESUMEN

Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.


Asunto(s)
Nanopartículas del Metal , MicroARNs , MicroARNs/genética , Oro , ADN/genética , Diagnóstico por Imagen
7.
Cell Discov ; 9(1): 59, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330497

RESUMEN

Virus spillover remains a major challenge to public health. A panel of SARS-CoV-2-related coronaviruses have been identified in pangolins, while the infectivity and pathogenicity of these pangolin-origin coronaviruses (pCoV) in humans remain largely unknown. Herein, we comprehensively characterized the infectivity and pathogenicity of a recent pCoV isolate (pCoV-GD01) in human cells and human tracheal epithelium organoids and established animal models in comparison with SARS-CoV-2. pCoV-GD01 showed similar infectivity to SARS-CoV-2 in human cells and organoids. Remarkably, intranasal inoculation of pCoV-GD01 caused severe lung pathological damage in hACE2 mice and could transmit among cocaged hamsters. Interestingly, in vitro neutralization assays and animal heterologous challenge experiments demonstrated that preexisting immunity induced by SARS-CoV-2 infection or vaccination was sufficient to provide at least partial cross-protection against pCoV-GD01 challenge. Our results provide direct evidence supporting pCoV-GD01 as a potential human pathogen and highlight the potential spillover risk.

8.
Chem Sci ; 13(48): 14373-14381, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36545151

RESUMEN

High sensitivity and specificity imaging of miRNA in living cells plays an important role in understanding miRNA-related regulation and pathological research. Localized DNA circuits have shown good performance in reaction rate and sensitivity and have been proposed for sensitive imaging of miRNA in living cells. However, most reported localized DNA circuits have a high risk of derailment or a limited loading rate capacity, which hinder their further application. To solve these issues, we herein developed a domino-like localized cascade toehold assembly (LCTA) amplification-based DNA nanowire to achieve highly sensitive and highly specific imaging of miRNAs in living cells by using DNA nanowires as reactant delivery vehicles and confining both reactant probes in a compact space. The LCTA is constructed by interval hybridization of DNA double-stranded probe pairs to a DNA nanowire with multiplex footholds generated by alternating chain hybridization. Due to the localized effect, the LCTA showed high reaction kinetics and sensitivity, and the method could detect miRNAs as low as 51 pM. The LCTA was proven to be able to accurately distinguish the miRNA expression difference between normal cells and cancer cells. In particular, the developed LCTA could be used to construct an OR logic gate to simultaneously image the total amount of multiple miRNAs in living cells. We believe that the developed LCTA can be an effective intracellular nucleic acid imaging tool and can promote the development of nucleic acid-related clinical disease diagnosis and DNA logical sensors.

9.
Chem Commun (Camb) ; 58(84): 11863-11866, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36196746

RESUMEN

Traditional RCA methods face some drawbacks including limited specificity and amplification templates with sequence dependence. Herein, a universal RCA (URCA) strategy for label-free nucleic acid sensing with high specificity was proposed, which could be used for sensing of different nucleic acids without redesigning or synthesizing new amplification templates. The URCA strategy also showed high accuracy for miRNA analysis in practical samples.


Asunto(s)
MicroARNs , Ácidos Nucleicos , Técnicas de Amplificación de Ácido Nucleico/métodos , MicroARNs/genética
10.
J Med Virol ; 94(7): 3223-3232, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35322439

RESUMEN

SARS-CoV-2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS-CoV-2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS-CoV-2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood. In this study, we systematically investigated the infectivity and pathogenicity of three VOCs, Alpha, Beta, and Delta, in mice in comparison with two well-understood SARS-CoV-2 mouse-adapted strains, MASCp6 and MASCp36, sharing key mutations in the receptor-binding domain (RBD) with Alpha or Beta, respectively. Our results showed that the Beta variant had the strongest infectivity and pathogenicity among the three VOCs, while the Delta variant only caused limited replication and mild pathogenic changes in the mouse lung, which is much weaker than what the Alpha variant did. Meanwhile, Alpha showed comparable infectivity in lungs in comparison with MASCp6, and Beta only showed slightly lower infectivity in lungs when compared with MASCp36. These results indicated that all three VOCs have acquired the capability to infect mice, highlighting the ongoing spillover risk of SARS-CoV-2 from humans to mice during the continued evolution of SARS-CoV-2, and that the key amino acid mutations in the RBD of mouse-adapted strains may be referenced as an early-warning indicator for predicting the spillover risk of newly emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
Transbound Emerg Dis ; 69(4): e1130-e1141, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34821052

RESUMEN

Tembusu virus (TMUV) associated disease is a growing cause of egg production decrease and encephalitis in domestic waterfowl, with expanding distribution. In previous studies, TMUV isolates were phylogenetically classified into two genetic lineages and different clusters with varied pathogenicity. However, little is known about the phenotypic and virulence characteristics of cluster 3 isolates within the duck TMUV lineage. In this study, the etiological agent causing egg drop in a laying chicken farm in southern China was investigated and a TMUV was isolated from pooled tissue samples. Genome sequencing and phylogenetic analysis grouped the isolate into TMUV cluster 3 with closest relation to the mosquito-origin TMUV YN12193. Cross-neutralization testing using convalescent sera revealed significant antigenic variation between the isolate and a representative strain of cluster 2.2. The experimental infection of SPF hens confirmed the ability of the isolate to replicate in multiple tissues and led to ovary damage. Additionally, high seroconversion rates (95.83%-100%) were detected in the three flocks following retrospective investigation. Our study demonstrates the occurrence of cluster 3 TMUV infection in laying chickens and that the virus exhibits significant antigenic variation compared with cluster 2 TMUV.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Enfermedades de las Aves de Corral , Animales , Variación Antigénica , Pollos , Patos , Femenino , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Filogenia , Estudios Retrospectivos
14.
Anal Chem ; 93(37): 12707-12713, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34491714

RESUMEN

Development of versatile sensing methods for sensitive and specific detection of clinically relevant nucleic acids and proteins is of great value for disease monitoring and diagnosis. In this work, we propose a novel isothermal Self-primer EXPonential Amplification Reaction (SPEXPAR) strategy based on a rationally engineered structure-switchable Metastable Hairpin template (MH-template). The MH-template initially keeps inactive with its self-primer overhanging a part of target recognition region to inhibit polymerization. The present targets can specifically compel the MH-template to transform into an "activate" conformation that primes a target-recyclable EXPAR. The method is simple and sensitive, can accurately and facilely detect long-chain single-stranded nucleic acids or proteins without the need of exogenous primer probes, and has a high amplification efficiency theoretically more than 2n. For a proof-of-concept demonstration, the SPEXPAR method was used to sensitively detect the characteristic sequence of the typical swine fever virus (CSFV) RNA and thrombin, as nucleic acid and protein models, with limits of detection down to 43 aM and 39 fM, respectively, and even the CSFV RNA in attenuated vaccine samples and thrombin in diluted serum samples. The SPEXPAR method may serve as a powerful technique for the biological research of single-stranded nucleic acids and proteins.


Asunto(s)
Ácidos Nucleicos , Técnicas de Amplificación de Ácido Nucleico , Proteínas , ARN
15.
Viruses ; 13(5)2021 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34065634

RESUMEN

Tembusu virus (TMUV), a highly infectious pathogenic flavivirus, causes severe egg-drop and encephalitis in domestic waterfowl, while the determinants responsible for viral pathogenicity are largely unknown. In our previous studies, virulent strain JXSP2-4 had been completely attenuated by successive passages in BHK-21 cells and the avirulent strain was designated as JXSP-310. Based on the backbone of JXSP2-4, a series of chimeric viruses were generated according to the amino acid substitutions in NS5 and their infectivities were also analyzed in cell cultures and ducklings. The results showed that the viral titers of RNA-dependent RNA polymerase (RdRp) domain-swapped cheimeric mutant (JXSP-310RdRp) in cells and ducklings were both markedly decreased compared with JXSP2-4, indicating that mutations in the RdRp domain affected viral replication. There are R543K and V711A two amino acid substitutions in the RdRp domain. Further site-directed mutagenesis showed that single-point R543K mutant (JXSP-R543K) exhibited similar replication efficacy compared with JXSP2-4 in cells, but the viral loads in JXSP-R543K-infected ducklings were significantly lower than that of JXSP2-4 and higher than JXSP-310RdRp. Surprisingly, the single-point V711A mutation we introduced rapidly reverted. In addition, qRT-PCR and Western blot confirmed that the mutations in the RdRp domain significantly affected the replication of the virus. Taken together, these results show that R543K substitution in the RdRp domain impairs the in vivo growth of TMUV, but sustaining its attenuated infectivity requires the concurrent presence of the V711A mutation.


Asunto(s)
Sustitución de Aminoácidos , Infecciones por Flavivirus/veterinaria , Flavivirus/fisiología , Mutación , Enfermedades de las Aves de Corral/virología , Proteínas no Estructurales Virales/genética , Replicación Viral , Animales , Técnicas de Cultivo de Célula , Línea Celular , Patos , Mutagénesis Sitio-Dirigida , Conformación Proteica , ARN Viral , Relación Estructura-Actividad , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
16.
Pathogens ; 10(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803824

RESUMEN

Duck viral enteritis is a highly contagious and fatal disease of commercial waterfowl flocks. The disease occurs sporadically or epizootically in mainland China due to insufficient vaccinations. Early and rapid diagnosis is important for preventive intervention and the control of epizootic events in clinical settings. In this study, we generated two monoclonal antibodies (MAbs) that specifically recognized the duck enteritis virus (DEV) envelope glycoprotein B and tegument protein UL47, respectively. Using these MAbs, a colloidal gold-based immunochromatographic assay (ICA) was developed for the efficient detection of DEV antigens within 15 min. Our results showed that the detection limit of the developed ICA strip was 2.52 × 103 TCID50/mL for the virus infected cell culture suspension with no cross-reactivity with other pathogenic viruses commonly encountered in commercially raised waterfowl. Using samples from experimentally infected ducks, we demonstrated that the ICA detected the virus in cloacal swab samples on day three post-infection, demonstrating an 80% concordance with the PCR. For tissue homogenates from ducks succumbing to infection, the detection sensitivity was 100%. The efficient and specific detection by this ICA test provides a valuable, convenient, easy to use and rapid diagnostic tool for DVE under both laboratory and field conditions.

18.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32024774

RESUMEN

Tembusu virus (TMUV) is a flavivirus responsible for panzootic outbreaks of severe egg-drop and fatal encephalitis of domestic waterfowl in China. Although TMUV can be attenuated by in vitro passaging, experimental evidence supporting the role of specific genetic changes in virulence attenuation is currently lacking. Here, we performed site-directed mutagenesis on five envelope (E) protein amino acid residues in accordance with the attenuated TMUV generated in our recent study. Our results showed that the Thr-to-Lys mutation of residue 367 in E protein (E367) plays a predominant role in viral cell adaptation and virulence attenuation in ducks compared with mutations in other residues. We further demonstrated that the positively charged basic amino acid substitution at E367 enhanced the viral binding affinity for glycosaminoglycans (GAGs) and reduced viremia levels and the efficiency of replication in major target organs in subcutaneously inoculated ducks. Interestingly, the T367K mutation increased viral neutralization sensitivity to the early immune sera. Together, our findings provide the first evidence that a basic amino acid substitution at E367 strongly impacts the in vitro and in vivo infection of TMUV.IMPORTANCE Outbreaks of Tembusu virus (TMUV) infection have caused huge economic losses in the production of domestic waterfowl since the virus was first recognized in China in 2010. To control TMUV infection, a live-attenuated vaccine candidate of TMUV was developed in our previous study, but the mechanisms of virulence attenuation are not fully understood. Here, we found that the Thr-to-Lys substitution at E367 is a crucial determinant of TMUV virulence attenuation in ducks. We demonstrated that the T367K mutation attenuates TMUV through reducing viral replication in the blood, brain, heart (ducklings), and ovaries. These data provide new insights into understanding the pathogenesis of TMUV and the rational development of novel TMUV vaccines.


Asunto(s)
Sustitución de Aminoácidos , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Flavivirus/genética , Proteínas del Envoltorio Viral/genética , Sustitución de Aminoácidos/inmunología , Animales , Anticuerpos Neutralizantes , Línea Celular , China/epidemiología , Patos/virología , Femenino , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/patología , Mutagénesis Sitio-Dirigida , Mutación , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/mortalidad , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , Carga Viral , Virulencia , Replicación Viral
19.
Vaccine ; 38(4): 933-941, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31708180

RESUMEN

Duck Tembusu virus (TMUV) is an emerging pathogenic flavivirus that causes severe egg-drop and fatal encephalitis in domestic ducks and geese. Although a live-attenuated virus vaccine is effective for disease control, the stability of the attenuation has not been clearly evaluated due to a poor understanding of the attenuation mechanism. Here, a virulent duck TMUV isolate was successively passaged in BHK-21 cells, leading to an approximately 100-fold increase of virus production in cell culture and a complete attenuation of virulence for ducks. The passaged virus induced high titers of TMUV-specific antibody and provided efficient protection against a virulent TMUV challenge after a single-dose vaccination. One hundred and two, and eighteen single-nucleotide polymorphisms (SNPs) at a frequency of >1% were respectively identified in the attenuated virus population and the original isolate by deep sequencing. The increased SNPs numbers suggested that the accumulated variants of virus population may have conferred the phenotypic changes. We cloned and characterized a dominant variant exhibiting similar fitness to the mixed population, and 23 amino acid substitutions were identified across the viral open reading frame. Using reverse genetics, two chimeric viruses were generated by introducing the mutated E or NS5 gene into the backbone of virulent TMUV. We found that mutations in the E gene conferred a fitness advantage in BHK-21 cells and decreased the virus pathogenicity, whereas NS5 mutations reduced the virus infectivity in ducklings without altering the in vitro fitness. In conclusion, increased mutations in a virulent TMUV strain did substantially reduce the virus virulence, and mutations in multiple genes co-contribute to TMUV attenuation.


Asunto(s)
Infecciones por Flavivirus/prevención & control , Flavivirus/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/administración & dosificación , Sustitución de Aminoácidos , Animales , Línea Celular , Cricetinae , Patos , Femenino , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/veterinaria , Variación Genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Vacunación , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología
20.
Sci Rep ; 9(1): 7784, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123280

RESUMEN

In June 2016, a disease characterised by intestinal haemorrhage with a mortality rate of approximately 5% was observed in a duck farm in Shandong province, China. Here, we report the isolation and characterisation of a reovirus from duck tissue samples by inoculating duck embryos and duck embryo fibroblasts (DEF). The isolate replicated in DEF and Vero cells and formed syncytia. Sequence analysis revealed that the viral genome was 23,434 nt in length with typical structure organization, consisting of 10 dsRNA segments ranging from 3998 nt (L1) to 1190 nt (S4) in size, and was genetically distinct from previous Chinese duck-origin reoviruses. Phylogenetic analyses showed that the isolate was most closely related to the recently reported duck reovirus D2533/6/1-10 isolated in Germany, forming a monophyletic branch different from known reference avian reoviruses. Experimental infection results indicated that the isolate replicated transiently in ducklings and was shed via faeces. Infection with the isolate caused epithelial cell damage and lymphocyte apoptotic death in the bursa of Fabricius, which may result in immunosuppression in infected ducklings. The role of the isolate in current duck haemorrhage enteritis remains to be determined, but its damage to the bursa warrants further investigation of the duck immune response.


Asunto(s)
Orthoreovirus Aviar/genética , Enfermedades de las Aves de Corral/virología , Infecciones por Reoviridae/veterinaria , Animales , China , Patos , Genoma Viral , Filogenia , Infecciones por Reoviridae/virología , Análisis de Secuencia de ADN/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...