Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2396-2405, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282869

RESUMEN

As arsenic widely exists in nature and has been used in the pharmaceutical preparations, the traditional Chinese medicine(TCM) with arsenic include realgar(As_2S_2 or As_4S_4), orpiment(As_2S_3), and white arsenic(As_2O_3). Among the above representative medicine, the TCM compound formulas with realgar are utilized extensively. Just in Chinese Pharmacopoeia(2020 edition), there are 37 Chinese patent medicines including realgar. The traditional element analysis focuses on the detection of the total amount of elements, which neglects the study on the speciation and valence of elements. The activity, toxicity, bioavailability, and metabolic pathways of arsenic in vivo are closely related to the existence of its form, and different forms of arsenic have different effects on organisms. Therefore, the study on the speciation and valence of arsenic is of great importance for arsenic-containing TCMs and their compound formulas. This paper reviewed four aspects of the speciation and valence of arsenic, including property, absorption and metabolism, toxicity, and analytical assay.


Asunto(s)
Arsénico , Arsenicales , Productos Biológicos , Medicamentos Herbarios Chinos , Arsénico/toxicidad , Arsénico/análisis , Arsenicales/análisis , Sulfuros , Trióxido de Arsénico , Medicina Tradicional China , Medicamentos Herbarios Chinos/toxicidad , Medicamentos Herbarios Chinos/análisis
2.
Int J Nanomedicine ; 15: 3251-3266, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32440122

RESUMEN

BACKGROUND: Peripheral neuropathy is a common and painful side effect that occurs in patients with cancer induced by Oxaliplatin (OXL). The neurotoxicity correlates with the damage of dorsal root ganglion (DRG) neurons and Schwann cells (SCs). Hydroxysafflor yellow A (HSYA), icariin, epimedin B and 3, 4-dihydroxybenzoic acid (DA) are the main neuroprotective ingredients identified in Wen-Luo-Tong (WLT), a traditional Chinese medicinal topical compound. The purpose of this study was to prepare and evaluate the efficacy of an ethosomes gel formulation loaded with a combination of HSYA, icariin, epimedin B and DA. However, the low LogP value, poor solubility and macromolecule are several challenges for topical delivery of these drugs. METHODS: Ethosomes were prepared by the single-step injection technique. Particle size, entrapment efficiency and in vitro drug deposition studies were determined to select the optimum ethosomes. The optimized ethosomes were further incorporated into carbopol to obtain a gel. The rheological properties, morphology, in vitro drug release, in vitro gel application and skin distribution of the ethosomes gels were studied. A rat model of oxaliplatin-induced neuropathy was established to assess the therapeutic efficacy of the ethosomes gel. RESULTS: Seventy percent (v/v) ethanol, cinnamaldehyde and Phospholipon 90G were employed to develop ethosomes a carrier system. This system had a high entrapment efficiency, carried large amounts of HSYA, epimedin B, DA and icarrin, and penetrated deep into the epidermis and dermis. The optimized ethosomes had the maximum deposition of icariin, HSYA, epimedin B and relative higher amount of DA in epidermis (2.00±0.13 µg/cm2, 5.72±0.75 µg/cm2, 1.97±0.27 µg/cm2 and 9.25±1.21 µg/cm2, respectively). 0.5% carbopol 980 was selected to develop the ethosomes gel with desirable viscoelasticity and spreadability, which was suitable for topical application. The mechanical allodynia and hyperalgesia induced by OXL in rats were significantly reduced after the new ethosomes gel was applied to rats compared to model group. CONCLUSION: Based on our findings, the ethosomes gel delivery system provided a new formulation for the topical delivery of HSYA, icariin, epimedin B and DA to counteract OXL-induced peripheral neuropathy.


Asunto(s)
Geles/química , Fármacos Neuroprotectores/uso terapéutico , Oxaliplatino/efectos adversos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Acroleína/análogos & derivados , Acroleína/química , Administración Tópica , Animales , Conducta Animal , Liberación de Fármacos , Sinergismo Farmacológico , Ganglios Espinales/citología , Liposomas , Masculino , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Oxaliplatino/administración & dosificación , Tamaño de la Partícula , Ratas Wistar , Reología , Piel/metabolismo , Absorción Cutánea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA