Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
J Control Release ; 373: 336-357, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996921

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative condition characterized by metabolic imbalances and neuroinflammation, posing a formidable challenge in medicine due to the lack of effective treatments. Despite considerable research efforts, a cure for AD remains elusive, with current therapies primarily focused on symptom management rather than addressing the disease's underlying causes. This study initially discerned, through Mendelian randomization analysis that elevating pantothenate levels significantly contributes to the prophylaxis of Alzheimer's disease. We explore the therapeutic potential of pantothenate encapsulated in liposomes (Pan@TRF@Liposome NPs), targeting the modulation of CRM1-mediated PKM2 nuclear translocation, a critical mechanism in AD pathology. Additionally, we investigate the synergistic effects of exercise, proposing a combined approach to AD treatment. Exercise-induced metabolic alterations share significant similarities with those associated with dementia, suggesting a potential complementary effect. The Pan@TRF@Liposome NPs exhibit notable biocompatibility, showing no liver or kidney toxicity in vivo, while demonstrating stability and effectiveness in modulating CRM1-mediated PKM2 nuclear translocation, thereby reducing neuroinflammation and neuronal apoptosis. The combined treatment of exercise and Pan@TRF@Liposome NP administration in an AD animal model leads to improved neurofunctional outcomes and cognitive performance. These findings highlight the nanoparticles' role as effective modulators of CRM1-mediated PKM2 nuclear translocation, with significant implications for mitigating neuroinflammation and neuronal apoptosis. Together with exercise, this dual-modality approach could offer new avenues for enhancing cognitive performance and neurofunctional outcomes in AD, marking a promising step forward in developing treatment strategies for this challenging disorder.

2.
Materials (Basel) ; 17(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998199

RESUMEN

Loess is widely distributed in the northwest and other regions, and its unique structural forms such as large pores and strong water sensitivity lead to its collapsibility and collapse, which can easily induce slope instability. Guar gum and basalt fiber are natural green materials. For these reasons, this study investigated the solidification of loess by combining guar gum and basalt fiber and analyzed the impact of the guar gum content, fiber length, and fiber content on the soil shearing strength. Using scanning electron microscopy (SEM), the microstructure of loess was examined, revealing the synergistic solidification mechanism of guar gum and basalt fibers. On this basis, a shear strength model was established through regression analysis with fiber length, guar gum content, and fiber content. The results indicate that adding guar gum and basalt fiber increases soil cohesion, as do fiber length, guar gum content, and fiber content. When the fiber length was 12 mm, the fiber content was 1.00%, and the guar gum content was equal to 0.50%, 0.75%, or 1.00%, the peak strength of the solidified loess increased by 82.80%, 85.90%, and 90.40%, respectively. According to the shear strength model, the predicted and test data of the shear strength of solidified loess are evenly distributed on both sides of parallel lines, indicating a good fit. These findings are theoretically significant and provide practical guidance for loess solidification engineering.

3.
Materials (Basel) ; 17(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998233

RESUMEN

Loess has the characteristics of loose, large pore ratio, and strong water sensitivity. Once it encounters water, its structure is damaged easily and its strength is degraded, causing a degree of subgrade settlement. The water sensitivity of loess can be evaluated by permeability and disintegration tests. This study analyzes the effects of guar gum content, basalt fiber content, and basalt fiber length on the permeability and disintegration characteristics of solidified loess. The microstructure of loess was studied through scanning electron microscopy (SEM) testing, revealing the synergistic solidification mechanism of guar gum and basalt fibers. A permeability model was established through regression analysis with guar gum content, confining pressure, basalt fiber content, and length. The research results indicate that the addition of guar gum reduces the permeability of solidified loess, the addition of fiber improves the overall strength, and the addition of guar gum and basalt fiber improves the disintegration resistance. When the guar gum content is 1.00%, the permeability coefficient and disintegration rate of solidified soil are reduced by 50.50% and 94.10%, respectively. When the guar gum content is 1.00%, the basalt fiber length is 12 mm, and the fiber content is 1.00%, the permeability of the solidified soil decreases by 31.9%, and the disintegration rate is 4.80%. The permeability model has a good fitting effect and is suitable for predicting the permeability of loess reinforced with guar gum and basalt fiber composite. This research is of vital theoretical worth and great scientific significance for guidelines on practicing loess solidification engineering.

4.
Therap Adv Gastroenterol ; 17: 17562848241256237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827646

RESUMEN

Background: Anti-tumor necrosis factor (TNF) monoclonal antibodies, especially infliximab (IFX) and adalimumab (ADA), are considered the first-line treatment for active Crohn's disease (CD). However, the predictive role of therapeutic drug monitoring (TDM) of serum anti-TNF in monitoring the treatment of inflammatory bowel disease (IBD) remains controversial. Objectives: To explore the correlation between serum anti-TNF levels and early endoscopic response in active CD using a TDM-based nomogram. Design: Cross-sectional study. Methods: The simplified endoscopic activity score for CD (SES-CD), Crohn's disease activity index (CDAI), laboratory parameters, and the serum trough levels of IFX and ADA were assessed. Results: The trough levels of IFX or ADA were significantly higher in patients with endoscopic response compared to non-responders in the development cohort (p < 0.001). The IFX and ADA levels showed a weak but significantly negative correlation with SES-CD (p < 0.001), CDAI (p < 0.001), and C-reactive protein (CRP) (p < 0.001) at week 14 post-IFX therapy in the development cohort. Furthermore, the receiver operating characteristic curve revealed that an optimal level of IFX (4.80 µg/mL) and ADA (8.80 µg/mL) exhibited the best performance in predicting endoscopic response. Concomitantly, we developed a novel nomogram prediction model based on the results of multivariate logistic regression analysis, which consisted of CRP, albumin (Alb), and anti-TNF trough levels at week 14. The nomogram showed significant discrimination and calibration for both IFX and ADA in the development cohort and performed well in the external validation cohort. Conclusion: This study demonstrates a robust association between serum concentrations of IFX, ADA, Alb, and CRP and primary endoscopic response in active CD patients. Importantly, the TDM- and laboratory marker-based nomogram may be used to evaluate the primary endoscopic response to anti-TNF therapy, especially for optimizing treatment strategies and switching therapy in CD patients.


Therapeutic drug monitoring-based nomogram predicts primary endoscopic response in Crohn's disease The present study established a therapeutic drug monitoring-based nomogram, which exhibits an exceptional predictive value, remarkable accuracy, and discrimination. This algorithmic nomogram holds the potential to enhance clinicians' comprehension of the underlying mechanisms contributing to individual patients' failure in achieving expected efficacy. Such approach is crucial for optimizing therapy options and facilitating biologic switching in refractory Crohn's disease.

5.
Microorganisms ; 12(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38930456

RESUMEN

Bacteria, fungi, and protists occupy a pivotal position in maintaining soil ecology. Despite limited knowledge on their responses to managed vegetation restoration strategies in karst regions, we aimed to study the essential microbial communities involved in the process of vegetation restoration. We compared microbial characteristics in four land use types: planted forests (PF), forage grass (FG), a mixture of plantation forest and forage grass (FF), and cropland (CR) as a reference. Our findings revealed that the richness of bacteria and protists was higher in FF compared to PF, while fungal richness was lower in both PF and FF than in CR. Additionally, the bacterial Shannon index in FF was higher than that in CR and PF, while the fungal and protist Shannon indices were similar across all four land use types. Significant differences were observed in the compositions of bacterial, fungal, and protist communities between FF and the other three land use types, whereas bacterial, fungal, and protist communities were relatively similar in PF and FG. In FF, the relative abundance of bacterial taxa Acidobacteria, Firmicutes, and Gemmatimonadetes was significantly higher than in PF and CR. Fungal communities were dominated by Ascomycota and Basidiomycota, with the relative abundance of Ascomycota significantly higher in FF compared to other land use types. Regarding protistan taxa, the relative abundance of Chlorophyta was higher in FF compared to CR, PF, and FG, while the relative abundance of Apicomplexa was higher in CR compared to FF. Importantly, ammonium nitrogen, total phosphorus, and microbial biomass nitrogen were identified as key soil properties predicting changes in the diversity of bacteria, fungi, and protists. Our results suggest that the microbial community under FF exhibits greater sensitivity to vegetation restoration compared to PF and FG. This sensitivity may stem from differences in soil properties, the formation of biological crusts and root systems, and management activities, resulting in variations in bacterial, fungal, and protist diversity and taxa in PF. As a result, employing a combination restoration strategy involving plantation forest and forage grass proves to be an effective approach to enhance the microbial community and thereby improve ecosystem functionality in ecologically fragile areas.

7.
Med Oncol ; 41(6): 153, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743323

RESUMEN

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Asunto(s)
Antraquinonas , Ciclo Celular , Proliferación Celular , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3B , Neoplasias Esofágicas , Humanos , Antraquinonas/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Biología Computacional , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Rheum/química
8.
Nat Commun ; 15(1): 4473, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796488

RESUMEN

Assessing failure pressure is critical in determining pipeline integrity. Current research primarily concerns the buckling performance of pressurized pipelines subjected to a bending load or axial compression force, with some also looking at the failure pressure of corroded pipelines. However, there is currently a lack of limit state models for pressurized pipelines with bending moments and axial forces. In this study, based on the unified yield criterion, we propose a limit state equation for steel pipes under various loads. The most common operating loads on buried pipelines are bending moment, internal pressure, and axial force. The proposed limit state equation for intact pipelines is based on a three-dimensional pipeline stress model with complex load coupling. Using failure data, we investigate the applicability of various yield criteria in assessing the failure pressure of pipelines with complex loads. We show that the evaluation model can be effectively used as a theoretical solution for assessing the failure pressure in such circumstances and for selecting appropriate yield criteria based on load condition differences.

9.
J Exp Clin Cancer Res ; 43(1): 108, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600610

RESUMEN

Ferroptosis is a newly identified iron-dependent form of death that is becoming increasingly recognized as a promising avenue for cancer therapy. N6-methyladenosine (m6A) is the most abundant reversible methylation modification in mRNA contributing to tumorigenesis. However, the crucial role of m6A modification in regulating ferroptosis during colorectal cancer (CRC) tumorigenesis remains elusive. Herein, we find that m6A modification is increased during ferroptotic cell death and correlates with the decreased m6A demethylase fat mass and obesity-associated protein (FTO) expression. Functionally, we demonstrate that suppressing FTO significantly induces CRC ferroptotic cell death, as well as enhancing CRC cell sensitivity to ferroptosis inducer (Erastin and RSL3) treatment. Mechanistically, high FTO expression increased solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4) expressions in an m6A-YTHDF2 dependent manner, thereby counteracting ferroptotic cell death stress. In addition, we identify Mupirocin as a novel inhibitor of FTO, and Mupirocin induces CRC ferroptosis and inhibits tumor growth. Clinically, the levels of FTO, SLC7A11, and GPX4, are highly correlated expression in CRC tissues. Our findings reveal that FTO protects CRC from ferroptotic cell death in promoting CRC tumorigenesis through triggering SLC7A11/GPX4 expression.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Neoplasias Colorrectales , Mupirocina , Humanos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+ , Carcinogénesis , Muerte Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico
10.
Acta Biomater ; 181: 161-175, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38679405

RESUMEN

Diabetic wound management remains a significant challenge in clinical care due to bacterial infections, excessive inflammation, presence of excessive reactive oxygen species (ROS), and impaired angiogenesis. The use of multifunctional wound dressings has several advantages in diabetic wound healing. Moreover, the balance of macrophage polarization plays a crucial role in promoting skin regeneration. However, few studies have focused on the development of multifunctional wound dressings that can regulate the inflammatory microenvironment and promote diabetic wound healing. In this study, an extracellular matrix-inspired glycopeptide hydrogel composed of glucomannan and polypeptide was proposed for regulating the local microenvironment of diabetic wound sites. The hydrogel network, which was formed via Schiff base and hydrogen bonding interactions, effectively inhibited inflammation and promoted angiogenesis during wound healing. The hydrogels exhibited sufficient self-healing ability and had the potential to scavenge ROS and to activate the mannose receptor (MR), thereby inducing macrophage polarization toward the M2 phenotype. The experimental results confirm that the glycopeptide hydrogel is an effective tool for managing diabetic wounds by showing antibacterial, ROS scavenging, and anti-inflammatory effects, and promoting angiogenesis to facilitate wound repair and skin regeneration in vivo. STATEMENT OF SIGNIFICANCE: •The designed wound dressing combines the advantage of natural polysaccharide and polypeptide. •The hydrogel promotes M2-polarized macrophages, antibacterial, scavenges ROS, and angiogenesis. •The multifunctional glycopeptide hydrogel dressing could accelerating diabetic wound healing in vivo.


Asunto(s)
Glicopéptidos , Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Nanofibras , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Nanofibras/química , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Glicopéptidos/farmacología , Glicopéptidos/química , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Células RAW 264.7 , Masculino , Mananos/química , Mananos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratas Sprague-Dawley , Complicaciones de la Diabetes/patología
11.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561502

RESUMEN

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastritis/patología , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
12.
J Fungi (Basel) ; 10(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667951

RESUMEN

The crucial functional arbuscular mycorrhizal fungi (AMF) and diazotrophs play pivotal roles in nutrient cycling during vegetation restoration. However, the impact of managed vegetation restoration strategies on AMF and diazotroph communities remains unclear. In this study, we investigated the community structure and diversity of AMF and diazotrophs in a karst region undergoing managed vegetation restoration from cropland. Soil samples were collected from soils under three vegetation restoration strategies, plantation forest (PF), forage grass (FG), and a mixture of plantation forest and forage grass (FF), along with a control for cropland rotation (CR). The diversity of both AMF and diazotrophs was impacted by managed vegetation restoration. Specifically, the AMF Shannon index was higher in CR and PF compared to FF. Conversely, diazotroph richness was lower in CR, PF, and FG than in FF. Furthermore, both AMF and diazotroph community compositions differed between CR and FF. The relative abundance of AMF taxa, such as Glomus, was lower in FF compared to the other three land-use types, while Racocetra showed the opposite trend. Among diazotroph taxa, the relative abundance of Anabaena, Nostoc, and Rhizobium was higher in FF than in CR. Soil properties such as total potassium, available potassium, pH, and total nitrogen were identified as the main factors influencing AMF and diazotroph diversity. These findings suggest that AMF and diazotroph communities were more sensitive to FF rather than PF and FG after managed vegetation restoration from cropland, despite similar levels of soil nutrients among PF, FG, and FF. Consequently, the integration of diverse economic tree species and forage grasses in mixed plantations notably altered the diversity and species composition of AMF and diazotrophs, primarily through the promotion of biocrust formation and root establishment.

14.
Front Med (Lausanne) ; 11: 1344107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576708

RESUMEN

Background: As the most common acute optic neuropathy in older patients, nonarteritic anterior ischemic optic neuropathy (NAION) presents with varying degrees of visual acuity loss and visual field defect. However, there is no generally accepted treatment for NAION. Objectives: To evaluate the efficacy and safety of platelet-rich plasma (PRP) for patients with acute NAION within 2 months. Design: A prospective, nonrandomized controlled trial. Methods: Twenty-five eyes of 25 patients were enrolled. Of them, 13 received anisodine hydrobromide and butylphthalide-sodium chloride injection continuously for 10 days as basic treatment in the control group, and 12 received two tenon capsule injections of PRP on a 10 days interval as an additional treatment in the PRP group. We compared the best-corrected visual acuity (BCVA) and capillary perfusion density (CPD) of radial peripapillary capillaries and the moth-eaten eara of the peripapillary superficial capillary plexus and deep capillary plexus at 1 day (D1) before the first PRP treatment and 7 days (D7), 14 days (D14), and 30 days (D30) after the first PRP injection. Ocular and systemic adverse effects were assessed. Results: In the PRP group, a better BCVA occurred at D30 (adjusted p = 0.005, compared with D1, recovered from 0.67 ± 0.59 to 0.43 ± 0.59), and a significant improvement in CPD was observed at D30 (adjusted p < 0.001, p = 0.027, p = 0.027, compared with D1, D7, D14, in sequence, the value was 35.97 ± 4.65, 38.73 ± 4.61, 39.05 ± 5.26, 42.71 ± 4.72, respectively). CPD at D7 in the PRP group was better than that in the control group (p = 0.043). However, neither BCVA nor the moth-eaten area index were significantly different (all p > 0.5) between the two groups. The main adverse effect was local discomfort resolved within 1 week, and no other systemic adverse events occurred. Conclusion: Tenon capsule injection of PRP was a safe treatment for AION and could improve capillary perfusion of the optic nerve head and might be helpful in increasing short-term vision in patients with acute NAION.

15.
Exp Cell Res ; 437(1): 113994, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479704

RESUMEN

m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Regulación hacia Arriba/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Microambiente Tumoral , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
16.
J Environ Manage ; 356: 120664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508006

RESUMEN

Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.


Asunto(s)
Microbiota , Suelo , Microbiología del Suelo , Bacterias/genética , Contaminación Ambiental
18.
Lung Cancer ; 190: 107541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531154

RESUMEN

OBJECTIVE: Metabolic reprogramming is an important coordinator of tumor development and resistance to therapy, such as the tendency of tumor cells to utilize glycolytic energy rather than oxidative phosphorylation, even under conditions of sufficient oxygen. Therefore, targeting metabolic enzymes is an effective strategy to overcome therapeutic resistance. MATERIALS AND METHODS: We explored the differential expression and growth-promoting function of MDH2 by immunohistochemistry and immunoblotting experiments in lung cancer patients and lung cancer cells. Pentose phosphate pathway-related phenotypes (including ROS levels, NADPH levels, and DNA synthesis) were detected intracellularly, and the interaction of malate and proteinase 6PGD was detected in vitro. In vivo experiments using implanted xenograft mouse models to explore the growth inhibitory effect and pro-chemotherapeutic function of dimethyl malate (DMM) on lung cancer. RESULTS: We found that the expression of malate dehydrogenase (MDH2) in the tricarboxylic acid cycle (TCA cycle) was increased in lung cancer. Biological function enrichment analysis revealed that MDH2 not only promoted oxidative phosphorylation, but also promoted the pentose phosphate pathway (PPP pathway). Mechanistically, it was found that malate, the substrate of MDH2, can bind to the PPP pathway metabolic enzyme 6PGD, inhibit its activity, reduce the generation of NADPH, and block DNA synthesis. More importantly, DMM can improve the sensitivity of lung cancer to the clinical drug cisplatin. CONCLUSION: We have identified malate as a natural inhibitor of 6PGD, which will provide new leads for the development of 6PGD inhibitors. In addition, the metabolic enzyme MDH2 and the metabolite malate may provide a backup option for cells to inhibit their own carcinogenesis, as the accumulated malate targets 6PGD to block the PPP pathway and inhibit cell cycle progression.


Asunto(s)
Neoplasias Pulmonares , Animales , Humanos , Ratones , ADN , Neoplasias Pulmonares/genética , Malatos/farmacología , NADP/metabolismo
19.
Adv Healthc Mater ; 13(14): e2304386, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38373601

RESUMEN

Tissue engineering at single-cell resolution has enhanced therapeutic efficacy. Droplet microfluidics offers a powerful platform that allows deterministic single-cell encapsulation into aqueous droplets, yet the direct encapsulation of cells into microgels remains challenging. Here, the design of a microfluidic device that is capable of single-cell encapsulation within polyethylene glycol norbornene (PEGNB) hydrogels on-chip is reported. Cells are first ordered in media within a straight microchannel via inertial focusing, followed by the introduction of PEGNB solution from two separate, converging channels. Droplets are thoroughly mixed by passage through a serpentine channel, and microgels are formed by photo-photopolymerization. This platform uniquely enables both single-cell encapsulation and excellent cell viability post-photo-polymerization. More than 90% of singly encapsulated mesenchymal stromal cells (MSCs) remain alive for 7 days. Notably, singly encapsulated MSCs have elevated expression levels in genes that code anti-inflammatory cytokines, for example, IL-10 and TGF-ß, thus enhancing the secretion of proteins of interest. Following injection into a mouse model with induced inflammation, singly encapsulated MSCs show a strong retention rate in vivo, reduce overall inflammation, and mitigate liver damage. These translational results indicate that deterministic single-cell encapsulation could find use in a broad spectrum of tissue engineering applications.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Norbornanos , Polietilenglicoles , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Polietilenglicoles/química , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Norbornanos/química , Microgeles/química , Encapsulación Celular/métodos , Hidrogeles/química , Hidrogeles/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos
20.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326625

RESUMEN

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Colorrectales , Depsipéptidos , Compuestos Macrocíclicos , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Depsipéptidos/química , Depsipéptidos/síntesis química , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...