Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e32018, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867969

RESUMEN

Ferroptosis, a cell death pathway dependent on iron, has been shown in research to play a role in the development, advancement, and outlook of tumours through ferroptosis-related lncRNAs (FRLRs). However, the value of the FRLRs in bladder cancer (BLCA) has not been thoroughly investigated. This research project involved developing a predictive model using ten specific FRLRs (AC099850.4, AL731567.1, AL133415.1, AC021321.1, SPAG5-AS1, HMGA2-AS1, RBMS3-AS3, AC006160.1, AL583785.1, and AL662844.4) through univariate COX and LASSO regression techniques. The validation of this signature as a standalone predictor was confirmed in a group of 65 patients from the urology bladder tumour database at the First Affiliated Hospital of Wenzhou Medical University in Wenzhou, China. Patients were categorized based on their median risk score into either a low-risk group or a high-risk group. Enrichment analysis identified possible molecular mechanisms that could explain the variations in clinical outcomes observed in high-risk and low-risk groups. Moreover, we explored the correlation between FLPS and immunotherapy-related indicators. The ability of FLPS to forecast the effectiveness of immunotherapy was validated by the elevated levels of immune checkpoint genes (PD-L1, CTLA4, and PD-1) in the group at high risk. We also screened the crucial FRLR (HMGA2-AS1) through congruent expression and prognostic conditions and established a ceRNA network, indicating that HMGA2-AS1 may affect epithelial-mesenchymal transition by modulating the Wnt signalling pathway through the ceRNA mechanism. We identified the top five mRNAs (NFIB, NEGR1, JAZF1, JCAD, and ESM1) based on random forest algorithm and analysed the relationship between HMGA2-AS1, the top five mRNAs, and immunotherapy, and their interactions with drug sensitivities. Our results suggest that patients with BLCA have a greater sensitivity to four drugs (dasatinib, pazopanib, erismodegib and olaparib). Our study provides new insights into the TME, key signalling pathways, genome, and potential therapeutic targets of BLCA, with future guidance for immunotherapy and targeted precision drugs.

2.
Cancer Med ; 13(11): e7308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38808948

RESUMEN

BACKGROUND: Exosomes play a crucial role in intercellular communication in clear cell renal cell carcinoma (ccRCC), while the long non-coding RNAs (lncRNAs) are implicated in tumorigenesis and progression. AIMS: The purpose of this study is to construction a exosomes-related lncRNA score and a ceRNA network to predict the response to immunotherapy and potential targeted drug in ccRCC. METHODS: Data of ccRCC patients were obtained from the TCGA database. Pearson correlation analysis was used to identify eExosomes-related lncRNAs (ERLRs) from Top10 exosomes-related genes that have been screened. The entire cohort was randomly divided into a training cohort and a validation cohort in equal scale. LASSO regression and multivariate cox regression was used to construct the ERLRs-based score. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and drug susceptibility between the high- and low-risk groups were also investigated. Finally, the relevant ceRNA network was constructed by machine learning to analyze their potential targets in immunotherapy and drug use of ccRCC patients. RESULTS: A score consisting of 4ERLRs was identified, and patients with higher ERLRs-based score tended to have a worse prognosis than those with lower ERLRs-based score. ROC curves and multivariate Cox regression analysis demonstrated that the score could be considered as a risk factor for prognosis in both training and validation cohorts. Moreover, patients with high scores are predisposed to experience poor overall survival, a larger prevalence of advanced stage (III-IV), a greater tumor mutational burden, a higher infiltration of immunosuppressive cells, and a greater likelihood of responding favorably to immunotherapy. The importance of EMX2OS was determined by mechanical learning, and the ceRNA network was constructed, and EMX2OS may be a potential therapeutic target, possibly exerting its function through the EMX2OS/hsa-miR-31-5p/TLN2 axis. CONCLUSIONS: Based on machine learning, a novel ERLRs-based score was constructed for predicting the survival of ccRCC patients. The ERLRs-based score is a promising potential independent prognostic factor that is closely correlated with the immune microenvironment and clinicopathological characteristics. Meanwhile, we screened out key lncRNAEMX2OS and identified the EMX2OS/hsa-miR-31-5p/TLN2 axis, which may provide new clues for the targeted therapy of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Exosomas , Inmunoterapia , Neoplasias Renales , ARN Largo no Codificante , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/mortalidad , ARN Largo no Codificante/genética , Neoplasias Renales/genética , Neoplasias Renales/terapia , Neoplasias Renales/mortalidad , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Exosomas/genética , Inmunoterapia/métodos , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes
3.
Infection ; 52(2): 301-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37926767

RESUMEN

PURPOSE: The prevalence of odontogenic infections remains one of the highest in the world. If untreated, odontogenic infections can break through the limitation, disseminate to other organs or spaces, and cause high mortality rates. However, it is still difficult to rapidly target limited or disseminated infections in clinical practice. The type of disseminated odontogenic infections and the responsible bacteria have not been described in detail. METHODS: Search databases (e.g., PubMed, MEDLINE, Web of Science, Embase) for reports published from 2018.1 to 2022.9. Use search strategies: ("odontogenic infections" OR "pulpitis" OR "periapical lesions" OR "periodontal diseases") AND ("disseminated infections" OR "complication"). RESULTS: Fourteen different types of disseminated odontogenic infections, most of which are polymicrobial infections, can spread through the body either direct or through hematogenous diffusion. Multiple microbial infections can be more invasive in the transmission of infection. Secondary infections are commonly associated with bacteria like Fusobacterium spp., Streptococcus spp., Peptostreptococcus spp., Prevotella spp., and Staphylococcus spp. Antibiotics with broad-spectrum activity are fundamental as first-line antimicrobial agents based on the microorganisms isolated from disseminated infections. CONCLUSION: This review elaborates on the epidemiology, microorganisms, risk factors, and dissemination routes, and provides evidence-based opinions on the diagnosis, multidisciplinary management, and prevention of odontogenic infections for dentists and clinicians.


Asunto(s)
Antibacterianos , Bacterias , Humanos , Antibacterianos/uso terapéutico , Streptococcus
4.
Adv Healthc Mater ; 12(22): e2202868, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37171209

RESUMEN

An ideal biomimetic periosteum is expected to wrap various bone surfaces to orchestrate an optimal microenvironment for bone regeneration, including facilitating local vascularization, recruiting osteoblasts, and mineralizing the extracellular matrix (ECM). To mimic the role of the natural periosteum in promoting bone repair, a 4D printing technique to inlay aligned cell sheets on shape-shifting hydrogel is used, containing biophysical signals and spatially adjustable physical properties, for the first time. The outer hydrogel layer endows the biomimetic periosteum with the ability to digitally coordinate its 3D geometry to match the specific macroscopic bone shape to maintain a bone healing microenvironment. The inner aligned human mesenchymal stem cells (hMSCs) layer not only promotes the migration and angiogenesis of co-cultured cells but also exhibits excellent osteogenic differentiation properties. In vivo experiments show that apart from morphing preset shapes as physical barriers, the aligned biomimetic periosteum can actively facilitate local angiogenesis and early-stage osteogenesis. Altogether, this present work provides a novel route to construct a personalized biomimetic periosteum with anisotropic microstructure by introducing a tunable shape to maintain the bone reconstruction microenvironment and this strategy can be extended to repair sophisticated bone defects.


Asunto(s)
Células Madre Mesenquimatosas , Periostio , Humanos , Osteogénesis , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Biomimética , Regeneración Ósea , Neovascularización Patológica , Hidrogeles , Impresión Tridimensional
5.
Adv Healthc Mater ; 12(21): e2203300, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37119120

RESUMEN

Patterned interfaces are widely used for surface modification of biomaterials because of a morphological unit similar to that of native tissue. However, engineering fast and cost-effective high-resolution micropatterns directly onto titanium surfaces remains a grand challenge. Herein, a simply designed ultraviolet (UV) light-based micropattern printing to obtain geometrical patterns on implant interfaces is fabricated by utilizing customized photomasks and titanium dioxide (TiO2 ) nanorods as a photo-responsive platform. The technique manipulates the cytoskeleton of micropatterning cells on the surface of TiO2 nanorods. The linear pattern surface shows the elongated morphology and parallel linear arrangements of human mesenchymal stem cells (hMSCs), significantly enhancing their osteogenic differentiation. In addition to the upregulated expression of key osteo-specific function genes in vitro, the accelerated osseointegration between the implant and the host bone is obtained in vivo. Further investigation indicates that the developed linear pattern surface has an outstanding effect on the cytoskeletal system, and finally activates Yes-Associated Protein (YAP)-mediated mechanotransduction pathways, initiating hMSCs osteogenic differentiation. This study not only offers a microfabrication method that can be extended to fabricate various shape- and size-controlled micropatterns on titanium surfaces, but also provides insight into the surface structure design for enhanced bone regeneration.


Asunto(s)
Oseointegración , Osteogénesis , Humanos , Osteogénesis/fisiología , Titanio/farmacología , Titanio/química , Rayos Ultravioleta , Mecanotransducción Celular , Propiedades de Superficie , Diferenciación Celular , Impresión Tridimensional
6.
Sci Adv ; 8(6): eabk3291, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148189

RESUMEN

Quasar outflows may play a crucial role in regulating the host galaxy, although the spatial scale of quasar outflows remain a major enigma, with their acceleration mechanism poorly understood. The kinematic information of outflow is the key to understanding its origin and acceleration mechanism. Here, we report the galactocentric distances of different outflow components for both a sample and an individual quasar. We find that the outflow distance increases with velocity, with a typical value from several parsecs to more than one hundred parsecs, providing direct evidence for an acceleration happening at a scale of the order of 10 parsecs. These outflows carry ∼1% of the total quasar energy, while their kinematics are consistent with a dust-driven model with a launching radius comparable to the scale of a dusty torus, indicating that the coupling between dust and quasar radiation may produce powerful feedback that is crucial to galaxy evolution.

7.
ACS Biomater Sci Eng ; 7(2): 577-585, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33443408

RESUMEN

Acceleration of neurite outgrowth and neuronal differentiation of neural cells are critical for effective neural tissue regeneration. In addition to biochemical cues, biomaterials have proven to be a valuable tool for engineering neural cellular physiological processes. However, strategies with convenient potential spatiotemporal control are still desirable. We here design a novel Fe-doped TiO2 nanorod film using hemoglobin as the Fe source to endow it with visible-light-responsive regulated surface hydroxyl groups (-OH), which was demonstrated as the central role in mediating cell-material interactions in our previous study. The acceleration of neurite outgrowth and neuronal differentiation of PC12 cells might be attributed to the upregulated distinct terminal hydroxyl groups triggered by visible light. We also demonstrate that the actin cytoskeletal system plays a pivotal role during these processes, approved by the inhibition experiment results. This study therefore sheds light on the regulation of neurite outgrowth and neuronal differentiation of neural cells using a convenient spatiotemporal controllable strategy.


Asunto(s)
Nanotubos , Proyección Neuronal , Animales , Diferenciación Celular , Luz , Neurogénesis , Células PC12 , Ratas , Titanio
8.
ACS Appl Mater Interfaces ; 12(28): 31793-31803, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32485098

RESUMEN

Titanium dioxide (TiO2) photofunctionalization has been demonstrated as an effective surface modification method for the osseointegration of implants. However, the insufficient understanding of the mechanism underlying photofunctionalization limits its clinical applications. Here, we report an ultraviolet (UV) radiant energy-dependent functionalization on TiO2 nanodots (TN) surfaces. We found the cell adhesion, proliferation, and osteogenic differentiation gradually increased with the accumulation of UV radiant energy (URE). The optimal functionalizing treatment energy was found to be 2000 mJ/cm2, which could regulate cell-specific behaviors on TN surfaces. The enhanced cell behaviors were regulated by the adsorption and functional site exposure of the extracellular matrix (ECM) proteins, which were the result of the surface physicochemical changes induced by the URE. The correlation between the URE and the reconstruction of surface hydroxyl groups was considered as an alternative mechanism of this energy-dependent functionalization. We also demonstrated the synergistic effects of FAK-RHOA and ERK1/2 signaling pathways on mediating the URE-dependent cell behaviors. Overall, this study provides a novel insight into the mechanisms of photofunctionalization, guiding the design of implants and the clinical practice of photofunctionalization.


Asunto(s)
Nanoestructuras/química , Titanio/química , Rayos Ultravioleta , Animales , Carbono/química , Humanos , Nanopartículas/química , Osteogénesis/efectos de la radiación , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA