Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Phys Rev Lett ; 132(21): 216001, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856265

RESUMEN

We propose a universal spin superconducting diode effect (SDE) induced by spin-orbit coupling (SOC) in systems with spin-triplet correlations, where the critical spin supercurrents in opposite directions are unequal. By analysis from both the Ginzburg-Landau theory and energy band analysis, we show that the spin-↑↑ and spin-↓↓ Cooper pairs possess opposite phase gradients and opposite momenta from the SOC, which leads to the spin SDE. Two superconductors with SOC, a p-wave superconductor as a toy model and a practical superconducting nanowire, are numerically studied and they both exhibit spin SDE. In addition, our theory also provides a unified picture for both spin and charge SDEs.

2.
Sci Adv ; 10(23): eado4756, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838153

RESUMEN

Topological systems hosting gapless boundary states have attracted huge attention as promising components for next-generation information processing, attributed to their capacity for dissipationless electronics. Nevertheless, recent theoretical and experimental inquiries have revealed the emergence of energy dissipation in precisely quantized electrical transport. Here, we present a criterion for the realization of truly no-dissipation design, characterized as Nin = Ntunl + Nbs, where Nin, Ntunl, and Nbs represent the number of modes participating in injecting, tunneling, and backscattering processes, respectively. The key lies in matching the number of injecting, tunneling, and backscattering modes, ensuring the equilibrium among all engaged modes inside the device. Among all the topological materials, we advocate for the indispensability of Chern insulators exhibiting higher Chern numbers to achieve functional devices and uphold the no-dissipation rule simultaneously. Furthermore, we design the topological current divider and collector, evading dissipation upon fulfilling the established criterion. Our work paves the path for developing the prospective topotronics.

3.
Mater Horiz ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764412

RESUMEN

In the face of the challenges posed by global warming, traditional methods of building heating and cooling contribute significantly to electricity and coal consumption, thereby emitting considerable amounts of greenhouse gases. Here, a dual-mode thermal management structural material is created by processing sustainable cellulose and lignin derived from wood waste into gels, followed by lamination. The cellulose surface of the material exhibits the ability to scatter solar radiation backward while emitting strongly in the mid-infrared wavelengths, whereas the lignin surface absorbs visible and near-infrared light, primarily releasing energy through non-radiative transitions. Consequently, the material can achieve sub-ambient radiative cooling of 6 °C and solar heating of 27.5 °C during the daytime by simply flipping its orientation. This pioneering material showcases the potential to significantly reduce cooling energy consumption by an average of 18% and heating energy consumption by 42%. Moreover, the integration of a thermal-electric generator within the dual-layer structure optimally utilizes the temperature differential between the two layers, converting it into electrical power. Notably, the dual-mode thermal management structural material exhibits impressive mechanical strength, boasting a flexural strength of 102 MPa, surpassing that of natural wood by over 4.8 times. With its dual-mode functionality and embedded thermal-electric generator, this material represents a crucial step towards achieving both thermal comfort and energy autonomy in sustainable building practices, thereby contributing to a more environmentally friendly and efficient future.

4.
Brain Res ; 1835: 148918, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588847

RESUMEN

The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Núcleo Dorsal del Rafe , Habénula , Ratas Sprague-Dawley , Neuronas Serotoninérgicas , Serotonina , Área Tegmental Ventral , Animales , Área Tegmental Ventral/metabolismo , Habénula/metabolismo , Masculino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Núcleo Dorsal del Rafe/metabolismo , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Ratas , Serotonina/metabolismo , Dopamina/metabolismo , Oxidopamina/toxicidad , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Corteza Prefrontal/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología
5.
Nat Commun ; 15(1): 3546, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670960

RESUMEN

Phase singularities are phase-indeterminate points where wave amplitudes are zero, which manifest as phase vertices or wavefront dislocations. In the realm of optical and electron beams, the phase singularity has been extensively explored, demonstrating a profound connection to orbital angular momentum. Direct local imaging of the impact of orbital angular momentum on phase singularities at the nanoscale, however, remains challenging. Here, we study the role of orbital angular momentum in phase singularities in graphene, particularly at the atomic level, through scanning tunneling microscopy and spectroscopy. Our experiments demonstrate that the scatterings between different orbital angular momentum states, which are induced by local rotational symmetry-breaking potentials, can generate additional phase singularities, and result in robust single-wavefront dislocations in real space. Our results pave the way for exploring the effects of orbital degree of freedom on quantum phases in quasiparticle interference processes.

6.
ACS Appl Mater Interfaces ; 16(13): 16612-16621, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38509757

RESUMEN

Developing excellent electromagnetic interference (EMI) shielding materials with robust EMI shielding efficiency (SE), high mechanical performance, and multifunctionality is imperative. Carbon materials are well recognized as promising alternatives for high-performance EMI shielding, but their high brittleness greatly hampers their applications. In this work, a cellulose nanofiber/reduced graphene oxide-glucose carbon aerogel (C-CNFs/rGO-glu) with high compression, elasticity, and excellent EMI shielding performance was fabricated by directional freeze-drying followed by carbonization. Specifically, the height and stress retention are 88% and 90.9%, respectively, after 100 cycles of compression release at a high strain of 70%. The electromagnetic shielding effectiveness of the aerogels reached 67.5 dB and presented an absorption-dominant shielding mechanism with a 97.5% absorption loss ratio. Further, the carbon aerogel could capture subtle electrical signals to monitor different human behaviors and showed excellent heat insulation and infrared stealth performance.

7.
Food Chem ; 446: 138885, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447387

RESUMEN

Biobased multi-stimulation materials have received considerable attention for intelligent packaging and anti-counterfeiting applications. Cellulose nanocrystals (CNCs) and cyanidins are good material candidates for monitoring food freshness as they are eco-friendly natural substances. This work incorporated cyanidin with a CNC-hosting substrate to develop a simple, environment-friendly colorimetric device to visualize food freshness. Across the pH range of 2-13, the indicator exhibited noticeable color changes ranging from red to gray and eventually to orange. The CNC-cyanidin (CC) film exhibited a dramatic color change from blue to dark red and high sensitivity at a relative humidity of 30 %-100 %. In corresponding to the total volatile elemental nitrogen (TVB-N) level of shrimp, the indicator showed distinguishable colors at different stages of shrimp. The findings imply that the samples have substantial potential for use as an intelligent indicator for tracking shrimp freshness.


Asunto(s)
Antocianinas , Alimentos Marinos , Humedad , Concentración de Iones de Hidrógeno , Antocianinas/química , Embalaje de Alimentos
8.
Sci Bull (Beijing) ; 69(9): 1221-1227, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38548568

RESUMEN

Energy dissipation is of fundamental interest and crucial importance in quantum systems. However, whether energy dissipation can emerge without backscattering inside topological systems remains a question. As a hallmark, we propose a microscopic picture that illustrates energy dissipation in the quantum Hall (QH) plateau regime of graphene. Despite the quantization of Hall, longitudinal, and two-probe resistances (dubbed as the quantum limit), we find that the energy dissipation emerges in the form of Joule heat. It is demonstrated that the non-equilibrium energy distribution of carriers plays much more essential roles than the resistance on energy dissipation. Eventually, we suggest probing the phenomenon by measuring local temperature increases in experiments and reconsidering the dissipation typically ignored in realistic topological circuits.

9.
Front Microbiol ; 15: 1349715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495513

RESUMEN

Background: Resistance to anti-tuberculous drugs is a major challenge in the treatment of tuberculosis (TB). We aimed to evaluate the clinical availability of nanopore-based targeted next-generation sequencing (NanoTNGS) for the diagnosis of drug-resistant tuberculosis (DR-TB). Methods: This study enrolled 253 patients with suspected DR-TB from six hospitals. The diagnostic efficacy of NanoTNGS for detecting Mycobacterium tuberculosis and its susceptibility or resistance to first- and second-line anti-tuberculosis drugs was assessed by comparing conventional phenotypic drug susceptibility testing (pDST) and Xpert MTB/RIF assays. NanoTNGS can be performed within 12 hours from DNA extraction to the result delivery. Results: NanoTNGS showed a remarkable concordance rate of 99.44% (179/180) with the culture assay for identifying the Mycobacterium tuberculosis complex. The sensitivity of NanoTNGS for detecting drug resistance was 93.53% for rifampicin, 89.72% for isoniazid, 85.45% for ethambutol, 74.00% for streptomycin, and 88.89% for fluoroquinolones. Specificities ranged from 83.33% to 100% for all drugs tested. Sensitivity for rifampicin-resistant tuberculosis using NanoTNGS increased by 9.73% compared to Xpert MTB/RIF. The most common mutations were S531L (codon in E. coli) in the rpoB gene, S315T in the katG gene, and M306V in the embB gene, conferring resistance to rifampicin, isoniazid, and ethambutol, respectively. In addition, mutations in the pncA gene, potentially contributing to pyrazinamide resistance, were detected in 32 patients. Other prevalent variants, including D94G in the gyrA gene and K43R in the rpsL gene, conferred resistance to fluoroquinolones and streptomycin, respectively. Furthermore, the rv0678 R94Q mutation was detected in one sample, indicating potential resistance to bedaquiline. Conclusion: NanoTNGS rapidly and accurately identifies resistance or susceptibility to anti-TB drugs, outperforming traditional methods. Clinical implementation of the technique can recognize DR-TB in time and provide guidance for choosing appropriate antituberculosis agents.

10.
Nat Mater ; 23(5): 596-603, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418925

RESUMEN

Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.

11.
Mol Biol Rep ; 51(1): 228, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281294

RESUMEN

BACKGROUND: The crucial role of STOML2 in tumor progression has been documented recently in various cancers. Previous studies have shown that STOML2 promoted cancer cell proliferation, but the underlying mechanism is not fully illustrated. METHODS AND RESULTS: The expression and clinical relevance of STOML2 in pan-cancer was analyzed by TIMER2 web platform in pan-cancer. The prognostic significance of STOML2 in HCC was evaluated utilizing KM curve and a nomogram model. Signaling pathways associated with STOML2 expression were discovered by GSEA. CCK-8 assay was performed to evaluate the proliferative capacity of HCC cells after manipulating STOML2 expression. Flow cytometry was utilized to analyze cell cycle progression. Results indicated that increased STOML2 expression in HCC linked to unfavorable clinical outcomes. Cell cycle and cell division related terms were enriched under conditions of elevated STOML2 expression via GSEA analysis. A notable decrease in cell proliferation was observed in MHCC97H with STOML2 knocked-down, accompanied by G1-phase arrest, up-regulation of p21, down-regulation of CyclinD1 and its regulatory factor MYC, while STOML2 overexpression in Huh7 showed the opposite results. These results indicated that STOML2 was responsible for HCC proliferation by regulating the expression level of MYC/cyclin D1 and p21. Furthermore, an inverse correlation was found between STOML2 expression and 5-FU sensitivity. CONCLUSIONS: STOML2 promotes cell cycle progression in HCC which is associated with activation of MYC/CyclinD1/p21 pathway, and modulates the response of HCC to 5-FU.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fluorouracilo/farmacología , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
12.
J Phys Condens Matter ; 35(50)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37683669

RESUMEN

Quantum spin Hall effect is characterized by topologically protected helical edge states. Here we study the thermal dissipation of helical edge states by considering two types of dissipation sources. The results show that the helical edge states are dissipationless for normal dissipation sources with or without Rashba spin-orbit coupling in the system, but they are dissipative for spin dissipation sources. Further studies on the energy distribution show that electrons with spin-up and spin-down are both in their own equilibrium without dissipation sources. Spin dissipation sources can couple the two subsystems together to induce voltage drop and non-equilibrium distribution, leading to thermal dissipation, while normal dissipation sources cannot. With the increase of thermal dissipation, the subsystems of electrons with spin-up and spin-down evolve from non-equilibrium finally to mutual equilibrium. In addition, the effects of disorder on thermal dissipation are also discussed. Our work provides clues to reduce thermal dissipation in the quantum spin Hall systems.

13.
ACS Nano ; 17(14): 13269-13277, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428964

RESUMEN

In recent years, significant strides have been made in the development of smart clothing, which combines traditional apparel with advanced technology. As our climate and environment undergo continuous changes, it has become critically important to invent and refine sophisticated textiles that enhance thermal comfort and human health. In this study, we present a "wearable forest-like textile". This textile is based on helical lignocellulose-tourmaline composite fibers, boasting mechanical strength that outperforms that of cellulose-based and natural macrofibers. This wearable microenvironment does more than generate approximately 18625 ions/cm3 of negative oxygen ions; it also effectively purifies particulate matter. Furthermore, our experiments demonstrate that the negative oxygen ion environment can slow fruit decay by neutralizing free radicals, suggesting promising implications for aging retardation. In addition, this wearable microenvironment reflects solar irradiation and selectively transmits human body thermal radiation, enabling effective radiative cooling of approximately 8.2 °C compared with conventional textiles. This sustainable and efficient wearable microenvironment provides a compelling textile choice that can enhance personal heat management and human health.


Asunto(s)
Energía Solar , Textiles , Humanos , Celulosa , Transición de Fase
14.
Nanoscale ; 15(25): 10740-10748, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37323016

RESUMEN

Recent experiments have revealed multiple borophene phases of distinct lattice structures, suggesting that the unit cells of ν1/6 and ν1/5 boron sheets, namely α and ß chains, serve as building blocks to assemble into novel borophene phases. Motivated by these experiments, we present a theoretical study of electron transport along two-terminal quasiperiodic borophene nanoribbons (BNRs), with the arrangement of the α and ß chains following the generalized Fibonacci sequence. Our results indicate that the energy spectrum of these quasiperiodic BNRs is multifractal and characterized by numerous transmission peaks. In contrast to the Fibonacci model that all the electronic states should be critical, both delocalized and critical states appear in the quasiperiodic BNRs, where the averaged resistance saturates at the inverse of one conductance quantum for the delocalized states in the large length limit and contrarily exhibits a power-law dependence on the nanoribbon length for the critical states. Besides, the self-similarity is observed from the transmission spectrum, where the conductance curves overlap at different energy regions of two quasiperiodic BNRs of different Fibonacci indices and the resistance curves are analogous to each other at different energy scales of a single quasiperiodic BNR. These results complement previous studies on quasiperiodic systems where the multifractal energy spectrum and the self-similarity are observed by generating quasiperiodic potential energies, suggesting that borophene may provide an intriguing platform for understanding the structure-property relationships and exploring the physical properties of quasiperiodic systems.


Asunto(s)
Nanotubos de Carbono , Transporte de Electrón , Boro , Electrónica
15.
ACS Nano ; 17(13): 12663-12672, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37340558

RESUMEN

A wood cell wall with cellulose as the key scaffold is a natural hierarchical lamellar structure. This wood-derived cellulose scaffold has recently attracted enormous attention and interest, but almost all efforts have been devoted to its whole tissue functionalization. Here, we report the short ultrasonic processing of a wood cellulose scaffold to directly generate 2D cellulose materials. The obtained 2D cellulose nanosheets consist of many highly oriented fibrils densely arranged and can be further converted to ultrathin 2D carbon nanosheets. The nanoparticles, nickel-iron layer double hydroxide nanoflowers, manganese dioxide nanorods, and zinc oxide nanostars, are successfully loaded in the 2D nanosheet, providing a versatile 2D platform strategy for excellent 2D hybrid nanomaterials.

16.
Phys Rev Lett ; 130(7): 076202, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867829

RESUMEN

In relativistic physics, both atomic collapse in a heavy nucleus and Hawking radiation in a black hole are predicted to occur through the Klein tunneling process that couples particles and antiparticles. Recently, atomic collapse states (ACSs) were explicitly realized in graphene because of its relativistic Dirac excitation with a large "fine structure constant." However, the essential role of the Klein tunneling in the ACSs remains elusive in experiment. Here we systematically study the quasibound states in elliptical graphene quantum dots (GQDs) and two coupled circular GQDs. Bonding and antibonding molecular collapse states formed by two coupled ACSs are observed in both systems. Our experiments supported by theoretical calculations indicate that the antibonding state of the ACSs will change into a Klein-tunneling-induced quasibound state revealing deep connection between the ACSs and the Klein tunneling.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36907989

RESUMEN

Airborne particulate matter (PM) pollution has caused a public health threat, including nanoscale particles, especially with emerging infectious diseases and indoor and vehicular environmental pollution. However, most existing indoor air filtration units are expensive, energy-intensive, and bulky, and there is an unavoidable trade-off between low-efficiency PM0.3/pathogen interception, PM removal, and air resistance. Herein, we designed and synthesized a two-dimensional continuous cellulose-sheath/net with a unique dual-network corrugated architecture to manufacture high-efficiency air filters and even N95 particulate face mask. Combined with its sheath/net structured pores (size 100-200 nm) consisting of a cellulose framework (1-100 nm diameter), the cellulose sheath/net filter offers high-efficiency air filtration (>99.5338%, Extrafine particles; >99.9999%, PM2.5), low-pressure drops, and a robustness quality factor of >0.14 Pa-1, utilizing their ultralight weight of 30 mg/m2 and physical adhesion and sieving behaviors. Simultaneously, masks prepared with cellulose-sheath/net filters are more likely to capture and block smaller particles than the N95 standard. The synthesis of such materials with their nanoscale features and designed macrostructures may suggest new design criteria for a novel generation of high-efficiency air filter media for different applications such as personal protection products and industrial dust removal.

18.
Carbohydr Polym ; 306: 120541, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746563

RESUMEN

Underwater sensing is of great significance in ocean exploration by divers to monitor their movements and keep in touch with the shore. However, unique sensors are required to apply in the marine environment that is quite different from the land circumstance. Herein, we reported a cellulose-skeleton-based composite hydrogel that is constraint to expand underwater under the effect of hydrogen bonds (H-bonds) and features advantages of high swelling resistance, structural durability, mechanical robustness, medium flexibility, high gauge factor (2.33) and long-term stability in water as a highly efficient wearable underwater sensor. This cellulose-based anti-swellable underwater hydrogel sensor showed tremendous potentials in underwater sensing applications for posture monitoring, communication, and marine biological research, etc.

19.
Carbohydr Polym ; 302: 120389, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604067

RESUMEN

Developing affordable and effective carbon dioxide (CO2) capture technology has attracted substantial intense attention due to the continued growth of global CO2 emissions. The low-cost and biodegradable cellulosic materials are developed into CO2 adsorbent recently. Epoxy-functionalized polyethyleneimine modified epichlorohydrin-cross-linked cellulose aerogel (EBPCa) was synthesized from alkaline cellulose solution, epoxy-functionalized polyethyleneimine (EB-PEI), and epichlorohydrin (ECH) through the freezing-thawing processes and freeze-drying. The Fourier transform infrared spectroscopy confirmed that the cellulose aerogel was successfully modified by EB-PEI. The X-ray photoelectron spectroscopy analyses confirmed the presence of N 1s and Cl 2p in EBPCa, meaning that the chlorine of ECH and the amino groups of EB-PEI exist in the cellulose surface. The obtained sample has a rich porous structure with a specific surface area in the range of 97.5-149.5 m2/g. Owing to its uniformly three-dimensional porous structure, the sample present preferable rigidity and carrying capacity, which 1 g of sample could easily carry the weight of a 3000 ml Erlenmeyer flask filled with water (total 4 kg). The sample showed good adsorption performance, with a maximum adsorption capacity of 6.45 mmol/g. This adsorbent has broad prospects in the CO2 capture process.


Asunto(s)
Dióxido de Carbono , Celulosa , Celulosa/química , Dióxido de Carbono/química , Polietileneimina/química , Epiclorhidrina , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Cloruros
20.
ACS Appl Mater Interfaces ; 15(1): 1903-1913, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36583722

RESUMEN

Here, a strategy to overcome the stiff and brittle nature of cellulose-derived carbon nanofibrils (CCNFs) is proposed through a facile, low-cost, and scalable approach. Flexible and conformal CCNFs with a low bending rigidity below 55.4 mN and tunable conductivities of 0.14-45.5 S m-1 are developed by introducing silanol as a multieffect additive in the electrospun hybrid nanofibrous network and subsequent carbonization at a relatively high temperature (900 °C) and chemical vapor deposition of polypyrrole (PPy) on the hybrid carbon nanofibril surface. Silica acts as a lubricant in each rigid carbon fiber to improve flexibility of the CCNF structure as well as a template during cellulose carbonization to prevent the melting of carbon nanofibrils. Meanwhile, the uniform coating of PPy leads to an improvement in electrical conductivity while conserving the porous structure and compressibility of the CCNF nets. These conductive hybrid CCNF films are evaluated as mechanoreceptors and physiological sensors, which are demonstrated to be applied in intelligent electronics including electronic skin, human-machine interfaces, and epidermic electrodes. The design or working principles of the hybrid CCNFs for achieving optimum applicable effects when applied in different scenarios are revealed.


Asunto(s)
Celulosa , Nanofibras , Humanos , Celulosa/química , Polímeros/química , Nanofibras/química , Carbono , Pirroles/química , Conductividad Eléctrica , Electrofisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...