Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899742

RESUMEN

Taking advantage of the excellent host-guest complexation ability between an auxochrome (adamantane group) and CB[7], the fluorescence emission performance of dyes in water was effectively improved with the addition of two equivalents of CB[7], which provided an efficient method for increasing fluorescence intensity in aqueous environments. Furthermore, these dyes with the host were successfully used in cell imaging.

2.
J Tissue Viability ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38697891

RESUMEN

BACKGROUND: Patients with cancer are susceptible to pressure injuries, which accelerate deterioration and death. In patients with post-acute cancer, the risk of pressure injury is ignored in home or community settings. OBJECTIVE: To develop and validate a community-acquired pressure injury risk prediction model for cancer patients. METHODS: All research data were extracted from the hospital's electronic medical record system. The identification of optimal predictors is based on least absolute shrinkage and selection operator regression analysis combined with clinical judgment. The performance of the model was evaluated by drawing a receiver operating characteristic curve and calculating the area under the curve (AUC), calibration analysis and decision curve analysis. The model was used for internal and external validation, and was presented as a nomogram. RESULTS: In total, 6257 participants were recruited for this study. Age, malnutrition, chronic respiratory failure, body mass index, and activities of daily living scores were identified as the final predictors. The AUC of the model in the training and validation set was 0.87 (95 % confidence interval [CI], 0.85-0.89), 0.88 (95 % CI, 0.85-0.91), respectively. The model demonstrated acceptable calibration and clinical benefits. CONCLUSIONS: Comorbidities in patients with cancer are closely related to the etiology of pressure injury, and can be used to predict the risk of pressure injury. IMPLICATIONS FOR PRACTICE: This study provides a tool to predict the risk of pressure injury for cancer patients. This suggests that improving the respiratory function and nutritional status of cancer patients may reduce the risk of community-acquired pressure injury.

3.
Environ Sci Pollut Res Int ; 31(22): 32212-32224, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649605

RESUMEN

Enhancing carbon fixation in the composting process was of great significance in the era of massive generation of organic solid waste. In this study, the experimental results showed that the contents of dissolved organic matter (DOM) in the experimental group (CT) were 37.58% higher than those in the control group (CK). The CO2 emission peaked on day 5, and the value of CK was 1.34 times that of CT. Significant differences were observed between the contents of sulfur fractions in CT and CK. This phenomenon may be due to the suppression of sulfur-reducing gene expression in CT. On day 51 of composting, the abundance of sulfur-oxidizing bacteria (SOB) Rhodobacter (5.33%), Rhodovulum (14.76%), and Thioclava (23.83%) in CT was higher than that in CK. In summary, the composting fermentation regulated by Fe2(SO4)3 increased the sulfate content, enhanced the expression of sulfur-oxidizing genes and SOB, and ultimately promoted carbon sequestration during composting.


Asunto(s)
Compostaje , Estiércol , Azufre , Azufre/metabolismo , Animales , Bovinos , Bacterias/metabolismo , Ciclo del Carbono , Oxidación-Reducción , Sulfatos/metabolismo , Microbiología del Suelo
4.
Toxicol Res ; 40(2): 189-202, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525134

RESUMEN

Chronic renal failure (CRF) resulting in vascular calcification, which does damage to blood vessels and endothelium, is an independent risk factor for stroke. It has been reported that cilostazol has a protective effect on the focal cerebral ischemic infarct. However, its impact on vascular injury in CRF combined stroke and its molecular protection mechanism have not been investigated. In this study, we carried out the effect of cilostazol on CRF combined stroke rats, and the results confirmed that it improved the neurobehavior, renal function as well as pathologic changes in both the kidney and brain. In addition, the inflammation and oxidative stress factors in the kidney and brain were suppressed. Moreover, the rates of brain edema and infarction were decreased. The injured brain-blood barrier (BBB) was recovered with less Evans blue extravasation and more expressions of zonula occludens-1(ZO-1) and occludin. More cerebral blood flow (CBF) in the ipsilateral hemisphere and more expression of CD31 and vascular endothelial growth factor (VEGF) in brain and kidney were found in the cilostazol group. Furthermore, cell apoptosis and cell autophagy became less, on the contrary, proteins of vascular endothelial growth factor receptor 2 (VEGFR2) after the cilostazol treatment were increased. More importantly, this protective effect is related to the pathway of Janus Kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), mammalian target of rapamycin (mTOR), and the hypoxia inducible factor-1α (HIF-1α). In conclusion, our results confirmed that cilostazol exerted a protective effect on the brain and kidney function, specifically in vascular injury, oxidative stress, cell apoptosis, cell autophagy, and inflammation response in CRF combined with stroke rats which were related to the upregulation of JAK/STAT3/mTOR signal pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00217-w.

5.
Clin Chim Acta ; 556: 117849, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417779

RESUMEN

Colorectal cancer (CRC) is a type of gastrointestinal cancer with high morbidity and mortality rates, and is often accompanied by distant metastases. Metastasis is a major cause of shortened survival time and poor treatment outcomes for patients with CRC. However, the molecular mechanisms underlying the metastasis of CRC remain unclear. Exosomes are a class of small extracellular vesicles that originate from almost all human cells and can transmit biological information (e.g., nucleic acids, lipids, proteins, and metabolites) from secretory cells to target recipient cells. Recent studies have revealed that non-coding RNAs (ncRNAs) can be released by exosomes into the tumour microenvironment or specific tissues, and play a pivotal role in tumorigenesis by regulating a series of key molecules or signalling pathways, particularly those involved in tumour metastasis. Exosomal ncRNAs have potential as novel therapeutic targets for CRC metastasis, and can also be used as liquid biopsy biomarkers because of their specificity and sensitivity. Therefore, further investigations into the biological function and clinical value of exosomal ncRNAs will be of great value for the prevention, early diagnosis, and treatment of CRC metastasis.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Vesículas Extracelulares , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , ARN no Traducido/genética , Exosomas/metabolismo , Vesículas Extracelulares/patología , Transducción de Señal , Microambiente Tumoral
6.
Invest Ophthalmol Vis Sci ; 65(2): 10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315495

RESUMEN

Purpose: To reveal the clinical significance, pathological involvement and molecular mechanism of imprinted in Prader-Willi syndrome (IPW) in RPE anomalies that contribute to AMD. Methods: IPW expression under pathological conditions were detected by microarrays and qPCR assays. In vitro cultured fetal RPE cells were used to study the pathogenicity induced by IPW overexpression and to analyze its upstream and downstream regulatory networks. Results: We showed that IPW is upregulated in the macular RPE-choroid tissue of dry AMD patients and in fetal RPE cells under oxidative stress, inflammation and dedifferentiation. IPW overexpression in fetal RPE cells induced aberrant apical-basal polarization as shown by dysregulated polarized markers, disrupted tight and adherens junctions, and inhibited phagocytosis. IPW upregulation was also associated with RPE oxidative damages, as demonstrated by intracellular accumulation of reactive oxygen species, reduced cell proliferation, and accelerated cell apoptosis. Mechanically, N6-methyladenosine level of the IPW transcript regulated its stability with YTHDC1 as the reader. IPW mediated RPE features by suppressing MEG3 expression to sequester its inhibition on the AKT serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway. We also noticed that the mTOR inhibitor rapamycin suppresses the AKT/mTOR pathway to alleviate the IPW-induced RPE anomalies. Conclusions: We revealed that IPW overexpression in RPE induces aberrant apical-basal polarization and oxidative damages, thus contributing to AMD progression. We also annotated the upstream and downstream regulatory networks of IPW in RPE. Our findings shed new light on the molecular mechanisms of RPE dysfunctions, and indicate that IPW blockers may be a promising option to treat RPE abnormalities in AMD.


Asunto(s)
Adenina/análogos & derivados , Degeneración Macular , Síndrome de Prader-Willi , Humanos , Epitelio Pigmentado de la Retina/patología , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba , Degeneración Macular/metabolismo , Estrés Oxidativo , Serina-Treonina Quinasas TOR/metabolismo
7.
Biol Reprod ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38401166

RESUMEN

OBJECTIVE: This study aimed to explore the specific pathways by which HOX transcript antisense intergenic RNA (HOTAIR) contributes to the pathogenesis of unexplained recurrent spontaneous abortion (URSA). METHODS: Real-time quantitative PCR (RT-qPCR) was employed to assess the differential expression levels of HOTAIR in chorionic villi tissues from URSA patients and women with voluntarily terminated pregnancies. HTR-8/SVneo served as a cellular model. Knockdown and overexpression of HOTAIR in the cells were achieved through siRNA transfection and pcDNA3.1 transfection, respectively. Cell viability, migration, and invasion were evaluated using cell counting kit-8 (CCK-8), scratch, and Transwell assays, respectively. The interaction among the HOTAIR/miR-1277-5p/fibrillin 2 (FBN2) axis was predicted through bioinformatics analysis and confirmed through in vitro experiments. Furthermore, the regulatory effects of the HOTAIR/miR-1277-5p/FBN2 signaling axis on cellular behaviors were validated in HTR-8/SVneo cells. RESULTS: We found that HOTAIR was downregulated in chorionic villi tissues from URSA patients. Overexpression of HOTAIR significantly enhanced the viability, migration, and invasion of HTR-8/SVneo cells, while knockdown of HOTAIR had the opposite effects. We further confirmed the regulatory effect of the HOTAIR/miR-1277-5p/FBN2 signaling axis in URSA. Specifically, HOTAIR and FBN2 were found to reduce the risk of URSA by enhancing cell viability, migration, and invasion, whereas miR-1277-5p exerted the opposite effects. CONCLUSION: HOTAIR promotes URSA development by targeting inhibition of miR-1277-5p/FBN2 axis.

8.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297099

RESUMEN

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Quinasa 2 Dependiente de la Ciclina , Diabetes Mellitus , Retinopatía Diabética , Animales , Ratones , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Células Endoteliales/metabolismo , Retina/metabolismo , ARN , Pez Cebra/genética
9.
Int Dent J ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38057214

RESUMEN

INTRODUCTION: The objective of the study was to compare the effects of orthodontic microimplant anchorage (MIA) and conventional extraoral arch anchorage (EAA) on tooth structure and oral inflammatory response in patients with Class II Division I malocclusion. METHODS: A total of 104 patients with Class II malocclusion were enrolled and were randomly assigned to receive MIA or EAA treatments. Clinical efficacy was assessed at 6 months after treatment by measuring molar shift, convex distance, and hinge angle difference between maxillary and mandibular incisors. X-ray was performed for tissue evaluations. The levels of cell adhesion molecule-1 (CAM-1), matrix metalloproteinase-2 (MMP-2), and proinflammatory cytokines in gingival sulcus fluid were measured using enzyme-linked immunosorbent assay to assess inflammatory responses to the implants. RESULTS: Our study demonstrated superior efficacy of MIA compared to EAA in terms of overall efficacy, molar shift, convex distance between upper and middle incisors, as well as hinge angle difference between upper and middle incisors. MIA also showed greater efficacy in reducing tissue fix-point measurements, including saddle point-nasal root point-superior alveolar seat point (SNA), alveolar seat point-nasal root point-inferior alveolar seat point (ANB), overlying (OJ), and overbite (OB). CONCLUSIONS: MIA is a novel orthodontic treatment that showed stronger efficacy in inducing molar shift and correcting soft/hard tissue positions, whilst generating suppressed inflammatory responses. Our study could have significant implications for practice in the orthodontic treatment of Class II malocclusion.

10.
J Phys Chem A ; 127(45): 9590-9600, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37933165

RESUMEN

The thermal decomposition mechanism of hydroxyacetone from 850 to 1390 K was examined by using flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry combined with density functional theory calculation. The results showed that keto-enol tautomerisms could occur prior to the thermal decomposition of hydroxyacetone. The decomposition pathways of hydroxyacetone and its isomer, 2-hydroxypropanal were characterized. The thermal decomposition reactions started at about 950 K. The homolysis reactions related to the cleavage of the CCO-CCOH bond of hydroxyacetone and 2-hydroxypropanal, as well as CH3 loss of hydroxyacetone, dominated the initial decomposition reactions. The subsequent decompositions of the radical intermediates generated by the initial homolysis decompositions were the major secondary decomposition reactions. The formation pathways of small molecules, such as H2, CH4, H2O, and HCHO, were proposed to proceed via molecular elimination reactions facilitated by the active α-H atoms. These elimination reactions were not negligible at high temperatures above 1230 K.

11.
Ren Fail ; 45(2): 2259234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37732403

RESUMEN

Renal ischemia-reperfusion (I/R) injury leads to irreversible brain damage with serious consequences. Activation of oxidative stress and release of inflammatory mediators are considered potential pathological mechanisms. Butylphthalide (NBP) has anti-inflammatory and antioxidant effects on I/R injuries. However, it is unclear whether NBP can effectively mitigate renal I/R secondary to brain injury as well as its mechanism, which are the aims of this study. Both renal I/R injury rats and oxygen and glucose deprivation cell models were established and pre-intervened NBP. The Morris water maze assay was used to detect behavior. Hippocampal histopathology and function were examined after renal I/R. Apoptosis and tube-forming capacity of brain microvascular endothelial cells (BMVECs) were tested. Immunohistochemistry and Western blot were used to measure protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathway and NOD-like receptor C2 (NOD2)/Mitogen-activated protein kinases (MAPK)/Nuclear factor kappa-B (NF-κB) pathway. NBP treatment attenuated renal I/R-induced brain tissue damage and learning and memory dysfunction. NBP treatment inhibited apoptosis and promoted blood-brain barrier restoration and microangiogenesis. Also, it decreased oxidative stress levels and pro-inflammatory factor expression in renal I/R rats. Furthermore, NBP enhanced BMVECs' viability and tube-forming capacity while inhibiting apoptosis and oxidative stress. Notably, the alleviating effects of NBP were attributed to Nrf2/HO-1 pathway activation and NOD2/MAPK/NF-κB inhibition. This study demonstrates that NBP maintains BBB function by activating the Nrf2/HO-1 pathway and inhibiting the NOD2/MAPK/NF-κB pathway to suppress inflammation and oxidative stress, thereby alleviating renal I/R-induced brain injury.


Asunto(s)
Lesiones Encefálicas , Daño por Reperfusión , Animales , Ratas , Factor 2 Relacionado con NF-E2 , FN-kappa B , Hemo-Oxigenasa 1 , Células Endoteliales , Encéfalo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Proteína Adaptadora de Señalización NOD2
12.
Psychol Res Behav Manag ; 16: 3883-3894, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745270

RESUMEN

Objective: In this study, we aim to establish and evaluate a predictive model for post-treatment anxiety state based on basic patient attributes and pre-treatment SAS scores, with the expectation that this model will guide clinical precision intervention. Methods: Data were collected from 606 patients with breast cancer who underwent surgery at our hospital between January 1, 2015 and December 30, 2018 and 144 newly diagnosed patients with breast cancer who were admitted between June 1, 2019 and December 30, 2019, for a total of 750 patients with breast cancer. The relationship between SAS_A scores and prognosis was verified by analyzing patient baseline characteristics, follow-up data, pre-treatment self-rating anxiety scale (SAS) scores, and SAS_A scores in follow-up period after the end of treatment. A risk prediction model was developed in view of the SAS_A scores, which was then screened, validated, and simplified by scoring, with a nomogram plotted. Results: The SAS_A score can be utilized to differentiate prognosis. In K-M analysis, the high SAS_A score group had a significantly poorer progression-free survival rate than the low score group, p-value < 0.0001. Through model feature selection and clinical analysis, all variables were finally incorporated to establish a predictive model with a ROC AUC of 0.721 (0.637-0.805) for the validation set and external data, and an AUC of 0.810 (0.719-0.902) for external data, demonstrating good predictive performance. Calibration curves and probability distribution maps were constructed. DCA and CIC analyses demonstrated that model intervention could boost clinical benefits more effectively than intervention for all patients. Conclusion: Using a predictive model to guide clinical management for anxiety in breast cancer patients is feasible, but additional research is required.

13.
Org Biomol Chem ; 21(40): 8084-8088, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37768024

RESUMEN

To evaluate the contribution of host-guest chemistry in fluorescence enhancement under aqueous conditions, two benzo[a]phenoxazine derivatives with the adamantyl group were prepared. After they formed stable complexes with methyl-ß-cyclodextrin, their emissions at 625-825 nm were greatly increased and fluorescence quantum yields reached 11.5-12.6% in aqueous solution. Furthermore, they were successfully applied in fluorescence labeling of organelles in HeLa cells.

14.
Chemistry ; 29(65): e202302782, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37749057

RESUMEN

The fluorescence of functional dyes was generally quenched in aqueous solution, which hindered their application in water-bearing detections. In this work, a novel strategy based on host-guest interaction was provided for the purpose of fluorescence enhancement in aqueous solution and cell imaging. Three adamantane-modified fluorescent dyes (Coum-Ad, NP-Ad, NR-Ad) with coumarin, 1,8-naphthalimide and Nile Red as fluorophores were initially designed and prepared. The ((adamantan-1-yl)methyl)amino group, as the auxochrome of those dyes, complexed with methylated ß-cyclodextrin (M-ß-CD) via supramolecular interaction, and then fluorescent supramolecular nanoparticles (FSNPs) were formed by self-assembly in water. The inclusion equilibrium constant (K) could be as high as 3.94×104  M-1 . With the addition of M-ß-CD, fluorescence quantum yields of these dyes were separately improved to 69.8 %, 32.9 % and 41.3 %. Inspired by the above satisfactory results, six adamantane-modified probes organelle-NPAds with organelle-targeting capability were further obtained. As the formation of hydrogen bonds between organelle-NPAd2 and M-ß-CD verified by theoretical calculation, K of organelle-NPAd2 (5.13×104  M-1 ~4.53×105  M-1 ) with M-ß-CD was higher than that of organelle-NPAd1 (1.15×104  M-1 ~3.66×104  M-1 ) and their fluorescence quantum yields increased to 32.8 %~83.6 % in aqueous solution. In addition, fluorescence enhancement was realized in cell imaging with the addition of M-ß-CD.


Asunto(s)
Adamantano , beta-Ciclodextrinas , Adamantano/química , beta-Ciclodextrinas/química , Colorantes Fluorescentes/química , Agua/química
15.
Analyst ; 148(18): 4463-4469, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565801

RESUMEN

A series of viscosity probes targeting different organelles were obtained using a single hemicyanine dye as the matrix structure. Specifically, probes 1a-d were obtained by introducing four amines (6-amino-2H-chromen-2-one, N-(2-aminoethyl)-4-methylbenzenesulfonamide, dodecan-1-amine and N,N diphenylbenzene-1,4-diamine) into the indole hemicyanine dye of the carboxylic acid with a D-π-A structure. Their maximum absorption wavelengths were in the range 570-586 nm and they had relatively large molar absorption coefficients, while their maximum emission wavelengths in the red light region were in the range 596-611 nm. Moreover, their fluorescence intensity in glycerol was 35-184 times higher than that in phosphate buffer solution (PBS). The lg(Fl) and lg η of probes 1a-d showed good linearity with high correlation coefficients according to the Förster-Hoffman equation. In addition, cell staining experiments demonstrated that 1a-c could target lysosomes, endoplasmic reticulum and mitochondria, respectively. They could also undergo viscosity-detectable changes in the corresponding organelles under the action of the corresponding ion carriers.


Asunto(s)
Colorantes Fluorescentes , Orgánulos , Colorantes Fluorescentes/química , Viscosidad , Lisosomas/química
16.
J Cancer ; 14(12): 2274-2288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576396

RESUMEN

Pancreatic adenocarcinoma (PAAD) is a malignant tumor with high morbidity and mortality rates. The NT5DC family is an evolutionarily-conserved family of 5'-nucleosidases that catalyze the intracellular hydrolysis of nucleotides. Although the NT5DC family has been linked to the initiation and growth of several cancers, its function in PAAD remains unclear. A series of bioinformatic analyses was used to ascertain the expression, prognosis, gene changes, functional enrichment, and immune regulatory functions of the NT5DC family in PAAD. NT5C2 and NT5DC1/2 mRNA and protein levels are increased in PAAD. Furthermore, the high mRNA expressions of NT5C2, NT5DC2, and NT5DC4 indicate a poor prognosis in patients with PAAD. The enrichment of biological processes and gene expression in the NT5DC family in PAAD were investigated using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses. Further investigations into immune infiltration revealed a close relationship between NT5DC gene expression and immune cell infiltration. These findings provide new insights into the biological function and prognostic value of the NT5DC gene family in PAAD.

17.
Cell Rep ; 42(7): 112779, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436898

RESUMEN

Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Neovascularización Coroidal , Degeneración Macular , Animales , Ratones , Neovascularización Coroidal/metabolismo , Células Endoteliales/metabolismo , Degeneración Macular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
18.
J Mater Chem B ; 11(30): 7134-7143, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37401500

RESUMEN

Four 1,8-naphthyridine derivatives (1a-1d) with different organelle targeting abilities were obtained using the Knoevenagel condensation reaction of 1,8-naphthyridine with 4-(N,N-diethylamino)benzaldehyde (2a), 4-(N,N-diphenylamino)benzaldehyde (2b), 4-(piperazin-1-yl)benzaldehyde (2c) and 4-(ethyl(4-formylphenyl)amino)-N-(2-((4-methylphenyl)sulfonamido)ethyl)butanamide (2d), respectively. The maximal absorption bands of dyes 1a-1d were observed at 375-447 nm, while their maximum emission peaks were situated at 495-605 nm. The optical properties showed that the fluorescence emission of dyes 1a-1d is shifted toward greater wavelengths as the system polarity (Δf) increased. Meanwhile, with increasing polarity of the mixed 1,4-dioxane/H2O system, the fluorescence intensity of dyes 1a-1d gradually decreased. Furthermore, the fluorescence intensity of 1a-1d enhanced by 12-239 fold as the polarity of 1,4-dioxane/H2O mixtures declined. 1a-1d had a large Stokes shift (up to 229 nm) in polar solvents in comparison to nonpolar solvents. The colocalization imaging experiments demonstrated that dyes 1a-1d (3-10 µM) were located in mitochondria, lipid droplets, lysosomes and the endoplasmic reticulum in living HeLa cells, respectively; and they could monitor the polarity fluctuation of the corresponding organelles. Consequently, this work proposes a molecular design idea with different organelle targeting capabilities based on the same new fluorophore, and this molecular design idea may provide more alternatives for polarity-sensitive fluorescent probes with organelle targeting.


Asunto(s)
Benzaldehídos , Retículo Endoplásmico , Humanos , Células HeLa , Solventes , Colorantes Fluorescentes , Naftiridinas
19.
Bioresour Technol ; 384: 129341, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343801

RESUMEN

The aim of this paper was to investigate the influence of Fe (III) on humification and free radicals evolution. The experimental data showed that the experimental group (CT) with Fe2(SO4)3 had a better degree of humification than the control group (CK). The humic substances (HS) content was 10% higher in CT (23.94 mg·g-1) than in CK (21.54 mg·g-1) in the final. Fe (III) contributed significantly to the formation of free radicals in HS. The amount of H2O2 in CT increased to 74.8 mmol·kg-1, while CK was only 46.5 mmol·kg-1. The content of semiquinone free radical was 10.32 × 1011 spins/mm3 in CT, 5.11 × 1011 spins/mm3 in CK in the end. Several iron-reducing bacteria were detected in composting, among which Paenibacillus was dominant. The above findings suggested that the application of Fe2(SO4)3 enhanced the iron reduction synergistic quinone redox cycling and promoted the generation of free radicals during the humification of composting.


Asunto(s)
Compostaje , Sustancias Húmicas , Sustancias Húmicas/análisis , Peróxido de Hidrógeno , Quinonas , Radicales Libres , Oxidación-Reducción , Hierro , Suelo
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123012, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37329832

RESUMEN

Thiophenol and its derivatives are compounds with high toxicity to organisms and environmental pollution, so it is necessary to detect the level of thiophenols in the environment and biological samples. The probes 1a-b were obtained by introducing the 2,4-dinitrophenyl ether group into diethylcoumarin-salicylaldehyde based compounds. And they can form host-guest compounds with methylated ß-cyclodextrin (M-ß-CD), the association constants of inclusion complexes are 49.2 M-1, 125 M-1 respectively. The fluorescence intensities of probes 1a-b at 600 nm (1a) and 670 nm (1b) increased significantly in thiophenols detection. Meanwhile, with the addition of M-ß-CD, the hydrophobic cavity of M-ß-CD significantly increased the fluorescence intensity of probes 1a-b, thus the detection limits of probes 1a-b to thiophenols were reduced from 410 nM, 365 nM to 62 nM, 33 nM respectively. Whereas, the good selectivity and short response time of probes 1a-b towards thiophenols was not affected in the presence of M-ß-CD. Moreover, probes 1a-b were used for further water sample detection and HeLa cell imaging experiments due to their good response to thiophenols and the results suggested that probes 1a-b had the potential to detect the content of thiophenols in water samples and living cells.


Asunto(s)
Colorantes Fluorescentes , Fenoles , Humanos , Colorantes Fluorescentes/química , Células HeLa , Compuestos de Sulfhidrilo/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...