RESUMEN
During the scientific expedition of the R/V Kexue in 2014, a new species belonging to the genus Astrocharis Koehler, 1904 was collected from a seamount near the Yap Trench. Astrocharis margarita sp. nov. is distinguished from the other species of Astrocharis by the following characters: radial shields are partly naked or completely covered by polygonal ossicles, and the body color is uniformly light pink. Maximum Likelihood Tree and Bayesian Tree, based on a concatenated dataset of COI, 16S, and 18S genes analyses, indicated that the monophyly of Astrocharis was not supported, which suggested the genus needs to be revised.
Asunto(s)
Equinodermos , Expediciones , Animales , Teorema de Bayes , FilogeniaRESUMEN
A specimen belonging to the deep-sea feather-star family Atelecrinidae was collected in April 2018 at the Kocebu Guyot at 1294 m deep. Based on its morphological characters, the specimen was identified as Paratelecrinuscubensis (Carpenter, 1881). This species of feather star is restricted to the deep sea and was known only from 12 records from the Bahamas and Cuba at depths of 567-892 m. The data represent the first record from the Western Pacific Ocean and the deepest record known, extending the depth where this feather star has been found to beyond 1000 m. The morphological characteristics of the Kocebu Guyot specimen were essentially identical to the morphology of the neotype, with a slight difference in the dorsal spine at the end of the cirri. The phylogenetic analysis based on the mitochondrial cytochrome c oxidase subunit I (COI), 16S rRNA genes, 28S rRNA genes, and 18S rRNA genes reveal a close relationship of P.cubensis with P.wyvilli. Results of our molecular phylogenetic analysis are consistent with our morphological identifications. Our find extends the known geographical distribution of the feather star P.cubensis to the Western Pacific Ocean and provide insights into deep-sea biodiversity in the Kocebu Guyot.
RESUMEN
Echinoids are an important component in benthic marine environments, which occur at all depths from the shallow-water hard substrates to abyssal depths. To date, the phylogeny of the sea urchins and the macro-evolutionary processes of deep-sea and shallow water groups have not yet been fully resolved. In the present study, we sequenced the complete mitochondrial genomes (mitogenomes) of four deep-sea sea urchins (Echinoidea), which were the first representatives of the orders Aspidodiadematoida, Pedinoida and Echinothurioida, respectively. The gene content and arrangement were highly conserved in echinoid mitogenomes. The tRNA-Ser AGY with DHU arm was detected in the newly sequenced echinoid mitogenomes, representing an ancestral structure of tRNA-Ser AGY. No difference was found between deep-sea and shallow water groups in terms of base composition and codon usage. The phylogenetic analysis showed that all the orders except Spatangoida were monophyletic. The basal position of Cidaroida was supported. The closest relationship of Scutelloida and Echinolampadoida was confirmed. Our phylogenetic analysis shed new light on the position of Arbacioida, which supported that Arbacioida was most related with the irregular sea urchins instead of Stomopneustoida. The position Aspidodiadematoida (((Aspidodiadematoida + Pedinoida) + Echinothurioida) + Diadematoida) revealed by mitogenomic data discredited the hypothesis based on morphological evidences. The macro-evolutionary pattern revealed no simple onshore-offshore or an opposite hypothesis. But the basal position of the deep-sea lineages indicated the important role of deep sea in generating the current diversity of the class Echinoidea.
Asunto(s)
Genoma Mitocondrial , Animales , Filogenia , Genoma Mitocondrial/genética , Erizos de Mar/genética , Secuencia de Bases , ARN de Transferencia/genéticaRESUMEN
The deep sea (> 200 m) is considered as the largest and most remote biome, which characterized by low temperatures, low oxygen level, scarce food, constant darkness, and high hydrostatic pressure. The sea stars (class Asteroidea) are ecologically important and diverse echinoderms in all of the world's oceans, occurring from the intertidal to the abyssal zone (to about 6000 m). To date, the phylogeny of the sea stars and the relationships of deep-sea and shallow water groups have not yet been fully resolved. Here, we recovered five mitochondrial genomes of deep-sea asteroids. The A+T content of the mtDNA in deep-sea asteroids were significantly higher than that of the shallow-water groups. The gene orders of the five new mitogenomes were identical to that of other asteroids. The phylogenetic analysis showed that the orders Valvatida, Paxillosida, Forcipulatida are paraphyletic. Velatida was the sister order of all the others and then the cladeValvatida-Spinulosida-Paxillosida-Notomyotida versus Forcipulatida-Brisingida. Deep-sea asteroids were nested in different lineages, instead of a well-supported clade. The tropical Western Pacific was suggested as the original area of asteroids, and the temperate water was initially colonized with asteroids by the migration events from the tropical and cold water. The time-calibrated phylogeny showed that Asteroidea originated during Devonian-Carboniferous boundary and the major lineages of Asteroidea originated during Permian-Triassic boundary. The divergence between the deep-sea and shallow-water asteroids coincided approximately with the Triassic-Jurassic extinction. Total 29 positively selected sites were detected in fifteen mitochondrial genes of five deep-sea lineages, implying a link between deep-sea adaption and mitochondrial molecular biology in asteroids.
Asunto(s)
Evolución Biológica , Estrellas de Mar , Animales , Equinodermos , Filogenia , Estrellas de Mar/genética , AguaRESUMEN
The deep-sea ecosystem is considered as the largest and most remote biome of the world. It is meaningful and important to elucidate the life origins by exploring the origin and adaptive genetic mechanisms of the large deep-sea organisms. Sea cucumbers (Holothuroidea) are abundant and economically important group of echinoderms, living from the shallow-waters to deep-sea. In this study, we present the mitochondrial genomes of the sea cucumber Chiridota heheva and Chiridota sp. collected from the deep-sea cold seep and hydrothermal vent, respectively. This is the first reported mitochondrial genomes from the order Apodida. The mitochondrial genomes of C. heheva (17,200 bp) and Chiridota sp. (17,199 bp) display novel gene arrangements with the first protein-coding gene rearrangements in the class Holothuroidea. Bases composition analysis showed that the A + T content of deep-sea holothurians were significantly higher than that of the shallow-water groups. We compared the arrangement of genes from the 24 available holothurian mitogenomes and found that the transposition, reverse transposition and tandem-duplication-random-losses (TDRL) may be involved in the evolution of mitochondrial gene arrangements in Holothuroidea. Phylogenetic analysis revealed that the Apodida clustered with Elasipodida, forming two basal deep-sea holothurian clades. The divergence between the deep-sea and shallow-water holothurians was located at 386.93 Mya, during the Late Devonian. Mitochondrial protein-coding genes of deep-sea holothurians underwent relaxed purifying selection. There are 57 positive selected amino acids sites for some mitochondrial genes of the three deep-sea clades, implying they may involve in the adaption of deep-sea sea cucumbers.
Asunto(s)
Evolución Biológica , Ambiente , Reordenamiento Génico , Genes Mitocondriales , Genoma Mitocondrial , Pepinos de Mar/genética , Animales , Procesos Autotróficos , Ecosistema , FilogeniaRESUMEN
The superfamily Tellinoidea is widespread and contains approximately 180 living species, which is one of the most diverse and representative groups among the bivalves. In order to extend our knowledge on evolution of tellinoidean species, we newly determined five tellinoidean mitochondrial genomes (mitogenomes). The newly determined mitogenome vary in size from 16,333 to 16,986 bp. The results show that the genome size and genome organization are conserved in tellinoideans. However, gene arrangement and the location of the major non-coding region (NCR) show diversity. The atp8 gene presents in all the five new mitogenomes. Two trnK and trnP genes were detected in Gari togata mitogenome. Phylogenetic analysis supports the monophyly of Tellinoidea, however, it's family Psammobiidae is polyphyletic. CREx analysis suggests that the gene order of Nuttallia olivacea is assumed as the most primitive condition of Tellinoidea. We map the gene order onto the phylogeny and infers the possible gene rearrangement scenarios among tellinoidean mitogenomes. The mitochondrial gene rearrangement is a useful information that help reassessing the phylogeny of Tellinoidea. Phylogenetic relationship and gene arrangement analyses suggest that a careful review for the current taxonomy of the family Psammobiidae is required.
Asunto(s)
Bivalvos/genética , Evolución Molecular , Reordenamiento Génico , Genes Mitocondriales , Genoma Mitocondrial , Animales , Bivalvos/clasificación , Orden Génico , FilogeniaRESUMEN
Arcidae is a diverse group of ark shells with over 260 described species. The phylogenetic relationships and the evolution of the mitochondrial genomes in this family were poorly understood. Comparisons of mitogenomes have been widely used to explore the phylogenetic relationship among animal taxa. We described the complete mitogenomes of Arca navicularis, Scapharca gubernaculum and one nearly complete mitogenome of Anadara consociata. The mitogenome of A. navicularis (18,103 bp) is currently the smallest known Arcidae mitogenome, while the mitogenomes of S. gubernaculum (45,697 bp) and A. consociata (44,034 bp) are relatively large. The mitochondrial gene orders of the three taxa were substantially different from each other, as well as the patterns found in other ark shells. The relationships among Arcidae species recovered from different mitochondrial characters (nucleotide sequence versus gene order) were in disagreement. The phylogeny based on nucleotide sequences did not support the monophyly of Arcidae, as Cucullaea labiata (Cucullaeidae) appeared as a subgroup within Arcinae, rather than sister group to the family Arcidae. In addition, we presented the first time-calibrated evolutionary tree of Arcidae based on mitochondrial DNA (mtDNA) sequences, which placed the deepest divergence within Arcidae at 342.36 million years ago (Mya), around the Carboniferous (360-300 Mya).
Asunto(s)
Arcidae/clasificación , Evolución Molecular , Mitocondrias/genética , Animales , Arcidae/genética , Orden Génico , Sistemas de Lectura Abierta/genética , FilogeniaRESUMEN
Hydrothermal vents are considered as one of the most extremely harsh environments on the Earth. In this study, the complete mitogenomes of hydrothermal vent squat lobsters, Munidopsis lauensis and M. verrilli, were determined through Illumina sequencing and compared with other available mitogenomes of anomurans. The mitogenomes of M. lauensis (17,483 bp) and M. verrilli (17,636 bp) are the largest among all Anomura mitogenomes, while the A+T contents of M. lauensis (62.40%) and M. verrilli (63.99%) are the lowest. The mitogenomes of M. lauensis and M. verrilli display novel gene arrangements, which might be the result of three tandem duplication-random loss (tdrl) events from the ancestral pancrustacean pattern. The mitochondrial gene orders of M. lauensis and M. verrilli shared the most similarities with S. crosnieri. The phylogenetic analyses based on both gene order data and nucleotide sequences (PCGs and rRNAs) revealed that the two species were closely related to Shinkaia crosnieri. Positive selection analysis revealed that eighteen residues in seven genes (atp8, Cytb, nad3, nad4, nad4l, nad5, and nad6) of the hydrothermal vent anomurans were positively selected sites.
RESUMEN
Decapod crustaceans, such as alvinocaridid shrimps, bythograeid crabs and galatheid squat lobsters are important fauna in the hydrothermal vents and have well adapted to hydrothermal vent environments. In this study, eighteen mitochondrial genomes (mitogenomes) of hydrothermal vent decapods were used to explore the evolutionary history and their adaptation to the hydrothermal vent habitats. BI and ML algorithms produced consistent phylogeny for Decapoda. The phylogenetic relationship revealed more evolved positions for all the hydrothermal vent groups, indicating they migrated from non-vent environments, instead of the remnants of ancient hydrothermal vent species, which support the extinction/repopulation hypothesis. The divergence time estimation on the Alvinocarididae, Bythograeidae and Galatheoidea nodes are located at 75.20, 56.44 and 47.41-50.43 Ma, respectively, which refers to the Late Cretaceous origin of alvinocaridid shrimps and the Early Tertiary origin of bythograeid crabs and galatheid squat lobsters. These origin stories are thought to associate with the global deep-water anoxic/dysoxic events. Total eleven positively selected sites were detected in the mitochondrial OXPHOS genes of three lineages of hydrothermal vent decapods, suggesting a link between hydrothermal vent adaption and OXPHOS molecular biology in decapods. This study adds to the understanding of the link between mitogenome evolution and ecological adaptation to hydrothermal vent habitats in decapods.
Asunto(s)
Adaptación Fisiológica/genética , Decápodos/genética , Genes Mitocondriales/genética , Aclimatación , Animales , Evolución Biológica , Decápodos/metabolismo , Ecosistema , Evolución Molecular , Variación Genética/genética , Genoma Mitocondrial/genética , Respiraderos Hidrotermales , FilogeniaRESUMEN
Stenopodidea Claus, 1872 (Crustacea: Decapoda) is one of the major groups of decapods crustaceans. Hitherto, only one complete mitochondrial genome (mitogenome) from the family Stenopodidae is available for the infraorder Stenopodidea. Here, we determined the complete mitogenome of Spongiocaris panglao de Grave and Saito, 2016 using Illumina sequencing, representing the first species from the family Spongicolidae. The 15,909â¯bp genome is a circular molecule and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. Although the overall genome organization is typical for metazoans, the mitogenome of S. panglao shows some derived characters. Aâ¯+â¯T content of 77.42% in S. pamglao mitogenome is second-highest among the dacapods described to date. The trnR gene exhibit modified secondary structure with the TψC loop completely missing, which might be a putative autapomorphy of S. pamglao mitogenome. Compared with the shallow-water stenopodidean species S. hispidus, the control region of S. pamglao exhibits three characteristics: larger size, higher Aâ¯+â¯T content, and more tandem repeat sequences. The gene order exhibited difference from the ancestral mitogenome pattern of the Pancrustacea, with 5 tRNA genes rearrangement. The result from BI was agreed with most morphological characters and molecular evidences, revealing that Stenopodidea and Reptantia had the closest relationship, as the sister group of Caridea. Still, the alternative hypothesis supported from ML topology cannot be completely rejected based on the current data. Estimated times revealed that the two stenopodideans families Stenopodidae and Spongicolidae diverged from each other around 122â¯Mya. The divergence time of spongicolid shrimp is in good agreement with the origin of their hexactinellid hosts (78-144â¯Mya).
Asunto(s)
Decápodos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mitocondrias/genética , Análisis de Secuencia de ADN/métodos , Animales , Composición de Base , Orden Génico , Tamaño del Genoma , Genoma Mitocondrial , Conformación de Ácido Nucleico , Filogenia , ARN/química , ARN MitocondrialRESUMEN
Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. The strand-specific bias in the nucleotide composition of the mtDNA has been known to be highly problematic for phylogenetic analyses. Here, the strand asymmetry was compared across 140 mollusc species and analyzed for a mtDNA fragment including twelve protein-coding genes. The analyses show that almost all species in Gastropoda (except Heterobranchia) and all species in Bivalvia present reversals of strand bias. The skew values on individual genes for all codon positions (P123), third codon positions (P3), and fourfold redundant third codon positions (P4FD) indicated that CG skews are the best indicators of strand asymmetry. The differences in the patterns of strand asymmetry significantly influenced the amino acid composition of the encoded proteins. These biases are most striking for the amino acids Valine, Cysteine, Asparagine and Threonines, which appear to have evolved asymmetrical exchanges in response to shifts in nucleotide composition. Molluscs with strong variability of genome architectures (ARs) are usually characterized by a reversal of the usual strand bias. Phylogenetic analyses show that reversals of asymmetric mutational constraints have consequences on the phylogenetic inferences, as taxa characterized by reverse strand bias (Heterobranchia and Bivalvia) tend to group together due to long-branch attraction (LBA) artifacts. Neutral Transitions Excluded (NTE) model did not overcome the problem of heterogeneous biases present in molluscs mt genomes, suggested it may not be appropriate for molluscs mt genome data. Further refinement phylogenetic models may help us better understand internal relationships among these diverse organisms.
Asunto(s)
Genoma Mitocondrial , Moluscos/clasificación , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Composición de Base , Bivalvos/clasificación , Bivalvos/genética , Codón , Gastrópodos/clasificación , Gastrópodos/genética , Moluscos/genética , FilogeniaRESUMEN
In the present study, the complete mitochondrial genome of Glossaulax reiniana was determined using the next-generation sequencing. The circular genome was found to be 15,254 bp in length and had an overall nucleotide composition of 30.6% A, 14.1% C, 15.8% G, and 39.5% T. Similar to the typical caenogastropod mitochondrial genomes, it contained 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a potential control origin. All protein-coding genes started with standard initiation codons (ATA and ATG) and ended by TAA or TAG. The lengths of 12S ribosomal RNA and 16S ribosomal RNA were 948 and 1353 bp, respectively. The largest noncoding region considered to contain the origin of replication was 59 bp in length. The complete mitochondrial genome reported here would provide useful information for molecular phylogeny, genetic conservation, and sustainable management of G. reiniana.
RESUMEN
Deep-sea hydrothermal vent is one of the most extreme environments on Earth with low oxygen and high levels of toxins. Decapod species from the family Alvinocarididae have colonized and successfully adapted to this extremely harsh environment. Mitochondria plays a vital role in oxygen usage and energy metabolism, thus it may be under selection in the adaptive evolution of the hydrothermal vent shrimps. In this study, the mitochondrial genome (mitogenome) of alvinocaridid shrimp Shinkaicaris leurokolos (Kikuchi & Hashimoto, 2000) was determined through Illumina sequencing. The mitogenome of S. leurokolos was 15,903bp in length, containing 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of sequenced alvinocaridids. It has the longest concatenated sequences of protein-coding genes, tRNAs and shortest pooled rRNAs among the alvinocaridids. The control regions (CRs) of alvinocaridid were significantly longer (p<0.01) than those of the other caridaen. The alignment of the alvinocaridid CRs revealed two conserved sequence blocks (CSBs), and each of the CSBs included a noncanonical open reading frame (ORF), which may be involved in adjusting mitochondrial energy metabolism to adapt to the hydrothermal environment. Phylogenetic analysis supported that the deep-sea hydrothermal vent shrimps may have originated from those living in shallow area. Positive selection analysis reveals the evidence of adaptive change in the mitogenome of Alvinocarididae. Thirty potentially important adaptive residues were identified, which were located in atp6, cox1, cox3, cytb and nad1-5. This study explores the mitochondrial genetic basis of hydrothermal vent adaptation in alvinocaridid for the first time, and provides valuable clues regarding the adaptation.
Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Artrópodos/genética , Decápodos/genética , Genoma Mitocondrial , Respiraderos Hidrotermales , Animales , Secuencia de Bases , Secuencia Conservada , Decápodos/fisiología , Sistemas de Lectura Abierta , Filogenia , ARN Ribosómico/genética , ARN de Transferencia/genética , Homología de Secuencia de Ácido NucleicoRESUMEN
Mollusca are the second largest phylum in the animal kingdom with different types of locomotion. Some molluscs are poor-migrating, while others are free-moving or fast-swimming. Most of the energy required for locomotion is provided by mitochondria via oxidative phosphorylation. Here, we conduct a comparative genomic analysis of 256 molluscs complete mitochondrial genomes and evaluate the role of energetic functional constraints on the protein-coding genes, providing a new insight into mitochondrial DNA (mtDNA) evolution. The weakly locomotive molluscs, compared to strongly locomotive molluscs, show significantly higher Ka/Ks ratio, which suggest they accumulated more nonsynonymous mutations in mtDNA and have experienced more relaxed evolutionary constraints. Eleven protein-coding genes (CoxI, CoxII, ATP6, Cytb, ND1-6, ND4L) show significant difference for Ka/Ks ratios between the strongly and weakly locomotive groups. The relaxation of selective constraints on Atp8 arise in the common ancestor of bivalves, and the further relaxation occurred in marine bivalves lineage. Our study thus demonstrates that selective constraints relevant to locomotive ability play an essential role in evolution of molluscs mtDNA.
Asunto(s)
Genoma Mitocondrial , Locomoción , Mitocondrias/genética , Mitocondrias/metabolismo , Moluscos/fisiología , Animales , Evolución Molecular , Genómica/métodos , Sistemas de Lectura Abierta , Filogenia , Selección GenéticaRESUMEN
This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes.
Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico/métodos , Moluscos/clasificación , Animales , Secuencia de Bases , Complejo IV de Transporte de Electrones/genética , Variación Genética , Geografía , Moluscos/genética , Océano Pacífico , Filogenia , Especificidad de la EspecieRESUMEN
We present the complete mitochondrial genomes (mitogenomes) of Trisidos kiyoni and Potiarca pilula, both important species from the family Arcidae (Arcoida: Arcacea). Typical bivalve mtDNA features were described, such as the relatively conserved gene number (36 and 37), a high A + T content (62.73% and 61.16%), the preference for A + T-rich codons, and the evidence of non-optimal codon usage. The mitogenomes of Arcidae species are exceptional for their extraordinarily large and variable sizes and substantial gene rearrangements. The mitogenome of T. kiyoni (19,614 bp) and P. pilula (28,470 bp) are the two smallest Arcidae mitogenomes. The compact mitogenomes are weakly associated with gene number and primarily reflect shrinkage of the non-coding regions. The varied size in Arcidae mitogenomes reflect a dynamic history of expansion. A significant positive correlation is observed between mitogenome size and the combined length of cox1-3, the lengths of Cytb, and the combined length of rRNAs (rrnS and rrnL) (P < 0.001). Both protein coding genes (PCGs) and tRNA rearrangements is observed in P. pilula and T. kiyoni mitogenomes. This analysis imply that the complicated gene rearrangement in mitochondrial genome could be considered as one of key characters in inferring higher-level phylogenetic relationship of Arcidae.
RESUMEN
The mitochondrial (mt) genome is a significant tool for investigating the evolutionary history of metazoan animals. The family Arcidae belongs to the superfamily Arcacea in the bivalve order Arcoida, comprising about 260 species. Currently, three complete mitochondrial genomes are available in GenBank, representing 1 subfamily and 2 genera. Here we present the complete mitochondrial genome sequence of Anadara vellicata (Bivalvia: Arcidae), the first report of complete mitogenome from Anadara, Arcidae, and compared its sequence with other available Arcidae mitogenomes. The A. vellicata mitogenome is 34,147bp in length, including 12 protein-coding genes (PCGs), 25 transfer RNAs (tRNAs), 2 ribosomal RNA (rRNA) genes and non-coding regions (NCR) (20,722bp). The nucleotide composition of the genome is A+T biased, accounting for 61.03%, with negative AT skew (-0.12) and positive GC skew (0.41). We report the evidence of alloacceptor tRNA gene recruitment (trnY-trnL2). A conserved 23bp-long sequence was used as the basis to infer the 3' terminus of rrnS. Most of the non-coding sequences (16,112bp) are observed within one segment. In the NCR, the tandem repeat (TR) region is 1143bp, comprising six tandem repeats with 189bp to 192bp in length. In addition, a long thymine-nucleotide stretch (T-stretch) was detected in the NCR of A. vellicata. The gene order and transcriptional polarity of the protein-coding genes is identical to other Arcidae species. tRNA genes are rearranged, making the gene order unique. The results support that mt gene arrangement among Arcidae species is not random, but correlated with their evolutionary relationships.
Asunto(s)
Arcidae/genética , Genoma Mitocondrial , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Orden Génico , Genes Mitocondriales , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico/genética , ARN de Transferencia/genética , Origen de Réplica , Secuencias Repetidas en TándemRESUMEN
In this paper, the complete mitochondrial genome of Scapharca kagoshimensis (Bivalvia: Arcidae) was determined. It is 46,713 in length, which contains 12 protein-coding genes (lacking of atp8), 2 ribosomal RNA genes, 42 transfer RNA genes and two ultra-long non-coding regions. The mitogenome of S. kagoshimensis is composed of 28.3% A, 34.5% T, 20.6% G and 16.6% C, showing a slight AT bias of 62.8. In addition, some peculiar patterns, like AT-rich, tandem repeats elements, are found in the largest non-coding region of S. kagoshimensis.
Asunto(s)
Genoma Mitocondrial , Scapharca/genética , Análisis de Secuencia de ADN/métodos , Animales , Composición de Base , Tamaño del GenomaRESUMEN
To better understand the characteristics and the evolutionary dynamics of mt genomes in Arcidae, the complete mitochondrial genome of Tegillarca granosa was firstly determined and compared with other two Arcidae species (Scapharca broughtonii and Scapharca kagoshimensis). The complete mitochondrial genome of T. granosa was 31,589 bp in length, including 12 protein-coding genes, 2 rRNA genes and 23 tRNA genes, and a major non-coding region. Three tandem repeat fragments were identified in the major non-coding region and the tandem repeat motifs of these fragments can be folded into stem-loop structures. The mitochondrial genome of the three species has several common features such as the AT content, the arrangement of the protein-coding genes, the codon usage of the protein-coding genes and AT/GC skew. However, a high level of variability is presented in the size of the genome, the number of tRNA genes and the length of non-coding sequences in the three mitogenomes. According to the phylogenetic analyses, these mitogenome-level characters are correlated with their phylogenetic relationships. It is the absence of the duplicated tRNAs and large non-coding sequences that are responsible for the length divergence of mitogenomes between T. granosa and other two Arcidae species. The phylogenetic analyses were conducted based on 12 partitioned protein genes, which support the relationship at the family level: (((Pectinidae+Ostreidae)+Mytilidae)+Arcidae).