Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Biosens Bioelectron ; 267: 116818, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39353368

RESUMEN

Each year, millions of new cancer cases and cancer-related deaths underscore the urgent need for effective, affordable screening methods. Circulating tumor cells (CTCs), which derived from tumors and shedding into bloodstream, are considered promising biomarkers for liquid biopsy due to their unique biological significance and the substantial volume of supporting research. Among many advanced CTCs detection methods, electrochemical sensing is rapidly developing due to their high selectivity, high sensitivity, low cost, and rapid detection capability, well meeting the growing demand for non-invasive liquid biopsy. This review focuses on the entire procedure of detecting CTCs using electrochemical cytosensors, starting from sample preparation, detailing bio-recognition elements for capturing CTCs, highlighting design strategies of cytosensor, and discussing the prospects and challenges of electrochemical cytosensor applications.

2.
Nat Commun ; 15(1): 6624, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103352

RESUMEN

Electrocatalytic H2 production from seawater, recognized as a promising technology utilizing offshore renewables, faces challenges from chloride-induced reactions and corrosion. Here, We introduce a catalytic surface where OH- dominates over Cl- in adsorption and activation, which is crucial for O2 production. Our NiFe-based anode, enhanced by nearby Cr sites, achieves low overpotentials and selective alkaline seawater oxidation. It outperforms the RuO2 counterpart in terms of lifespan in scaled-up stacks, maintaining stability for over 2500 h in three-electrode tests. Ex situ/in situ analyses reveal that Cr(III) sites enrich OH-, while Cl- is repelled by Cr(VI) sites, both of which are well-dispersed and close to NiFe, enhancing charge transfer and overall electrode performance. Such multiple effects fundamentally boost the activity, selectively, and chemical stability of the NiFe-based electrode. This development marks a significant advance in creating durable, noble-metal-free electrodes for alkaline seawater electrolysis, highlighting the importance of well-distributed catalytic sites.

3.
Front Neurosci ; 18: 1283518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135733

RESUMEN

Objectives: This study aimed to elucidate the influences of 1p/19q co-deletion on structural connectivity alterations in patients with dominant hemisphere insular diffuse gliomas. Methods: We incorporated 32 cases of left insular gliomas and 20 healthy controls for this study. Using diffusion MRI, we applied correlational tractography, differential tractography, and graph theoretical analysis to explore the potential connectivity associated with 1p/19q co-deletion. Results: The study revealed that the quantitative anisotropy (QA) of key deep medial fiber tracts, including the anterior thalamic radiation, superior thalamic radiation, fornix, and cingulum, had significant negative associations with 1p/19q co-deletion (FDR = 4.72 × 10-5). These tracts are crucial in maintaining the integrity of brain networks. Differential analysis further supported these findings (FWER-corrected p < 0.05). The 1p/19q non-co-deletion group exhibited significantly higher clustering coefficients (FDR-corrected p < 0.05) and reduced betweenness centrality (FDR-corrected p < 0.05) in regions around the tumor compared to HC group. Graph theoretical analysis indicated that non-co-deletion patients had increased local clustering and decreased betweenness centrality in peritumoral brain regions compared to co-deletion patients and healthy controls (FDR-corrected p < 0.05). Additionally, despite not being significant through correction, patients with 1p/19q co-deletion exhibited lower trends in weighted average clustering coefficient, transitivity, small worldness, and global efficiency, while showing higher tendencies in weighted path length compared to patients without the co-deletion. Conclusion: The findings of this study underline the significant role of 1p/19q co-deletion in altering structural connectivity in insular glioma patients. These alterations in brain networks could have profound implications for the neural functionality in patients with dominant hemisphere insular gliomas.

4.
Nat Commun ; 15(1): 6208, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043681

RESUMEN

It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co2+-Na+ combo. A commercial Ni foam sustains ampere-level current densities alternatingly during continuous electrolysis for 93.8 h in an acidic solution, whereas such a Ni foam is completely dissolved in ~2 h for conventional electrolysis conditions. The work not only explores an alternating electrolysis-based system, alkali metal cation-based catalytic systems, and alkali metal cation-based electrodeposition techniques, and beyond, but demonstrates the possibility of prolonged electrolysis by repeated deposition-dissolution processes. With enough adjustable experimental variables, the upper improvement limit in the electrode lifespan would be high.

5.
CNS Neurosci Ther ; 30(6): e14805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887197

RESUMEN

AIMS: We intend to elucidate the alterations of cerebral networks in patients with insular glioma-related epilepsy (GRE) based on resting-state functional magnetic resonance images. METHODS: We collected 62 insular glioma patients, who were subsequently categorized into glioma-related epilepsy (GRE) and glioma with no epilepsy (GnE) groups, and recruited 16 healthy individuals matched to the patient's age and gender to form the healthy control (HC) group. Graph theoretical analysis was applied to reveal differences in sensorimotor, default mode, visual, and executive networks among different subgroups. RESULTS: No significant alterations in functional connectivity were found in either hemisphere insular glioma. Using graph theoretical analysis, differences were found in visual, sensorimotor, and default mode networks (p < 0.05). When the glioma located in the left hemisphere, the degree centrality was reduced in the GE group compared to the GnE group. When the glioma located in the right insula, the degree centrality, nodal efficiency, nodal local efficiency, and nodal clustering coefficient of the GE group were lower than those of the GnE group. CONCLUSION: The impact of insular glioma itself and GRE on the brain network is widespread. The networks altered by insular GRE differ depending on the hemisphere location. GRE reduces the nodal properties of brain networks than that in insular glioma.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Glioma , Imagen por Resonancia Magnética , Humanos , Glioma/diagnóstico por imagen , Glioma/fisiopatología , Glioma/complicaciones , Masculino , Femenino , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/fisiopatología , Persona de Mediana Edad , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Corteza Insular/diagnóstico por imagen , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología
6.
Cancer Med ; 13(11): e7377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850123

RESUMEN

OBJECTIVE: The study aimed to identify if clinical features and survival outcomes of insular glioma patients are associated with our classification based on the tumor spread. METHODS: Our study included 283 consecutive patients diagnosed with histological grade 2 and 3 insular gliomas. A new classification was proposed, and tumors restricted to the paralimbic system were defined as type 1. When tumors invaded the limbic system (referred to as the hippocampus and its surrounding structures in this study) simultaneously, they were defined as type 2. Tumors with additional internal capsule involvement were defined as type 3. RESULTS: Tumors defined as type 3 had a higher age at diagnosis (p = 0.002) and a higher preoperative volume (p < 0.001). Furthermore, type 3 was more likely to be diagnosed as IDH wild type (p < 0.001), with a higher rate of Ki-67 index (p = 0.015) and a lower rate of gross total resection (p < 0.001). Type 1 had a slower tumor growth rate than type 2 (mean 3.3%/month vs. 19.8%/month; p < 0.001). Multivariate Cox regression analysis revealed the extent of resection (HR 0.259, p = 0.004), IDH status (HR 3.694, p = 0.012), and tumor spread type (HR = 1.874, p = 0.012) as independent predictors of overall survival (OS). Tumor grade (HR 2.609, p = 0.008), the extent of resection (HR 0.488, p = 0.038), IDH status (HR 2.225, p = 0.025), and tumor spread type (HR 1.531, p = 0.038) were significant in predicting progression-free survival (PFS). CONCLUSION: The current study proposes a classification of the insular glioma according to the tumor spread. It indicates that the tumors defined as type 1 have a relatively better nature and biological characteristics, and those defined as type 3 can be more aggressive and refractory. Besides its predictive value for prognosis, the classification has potential value in formulating surgical strategies for patients with insular gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Clasificación del Tumor , Humanos , Glioma/patología , Glioma/mortalidad , Glioma/clasificación , Glioma/cirugía , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/clasificación , Adulto , Anciano , Pronóstico , Isocitrato Deshidrogenasa/genética , Estudios Retrospectivos , Adulto Joven , Organización Mundial de la Salud
7.
Ann Clin Transl Neurol ; 11(6): 1567-1578, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725138

RESUMEN

OBJECTIVE: Previous resting-state functional magnetic resonance imaging studies on intracerebral hemorrhage patients have focused more on the static characteristics of brain activity, while the time-varying effects during scanning have received less attention. Therefore, the current study aimed to explore the dynamic functional network connectivity changes of intracerebral hemorrhage patients. METHODS: Using independent component analysis, the sliding window approach, and the k-means clustering analysis method, different dynamic functional network connectivity states were detected from resting-state functional magnetic resonance imaging data of 37 intracerebral hemorrhage patients and 44 healthy controls. The inter-group differences in dynamic functional network connectivity patterns and temporal properties were investigated, followed by correlation analyses between clinical scales and abnormal functional indexes. RESULTS: Ten resting-state networks were identified, and the dynamic functional network connectivity matrices were clustered into four different states. The transition numbers were decreased in the intracerebral hemorrhage patients compared with healthy controls, which was associated with trail making test scores in patients. The cerebellar network and executive control network connectivity in State 1 was reduced in patients, and this abnormal dynamic functional connectivity was positively correlated with the animal fluency test scores of patients. INTERPRETATION: The current study demonstrated the characteristics of dynamic functional network connectivity in intracerebral hemorrhage patients and revealed that abnormal temporal properties and functional connectivity may be related to the performance of different cognitive domains after ictus. These results may provide new insights into exploring the neurocognitive mechanisms of intracerebral hemorrhage.


Asunto(s)
Hemorragia Cerebral , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Hemorragia Cerebral/fisiopatología , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/complicaciones , Masculino , Femenino , Adulto , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Conectoma , Persona de Mediana Edad , Función Ejecutiva/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen
8.
Chem Commun (Camb) ; 60(42): 5554-5557, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712366

RESUMEN

Zirconia as a polycrystalline catalyst can be effectively tuned by doping low-valence elements and meanwhile form abundant oxygen vacancies. Herein, the crystalline structures of zirconia are modulated by scandium doping and proposed as a robust catalyst for nitrate reduction to ammonia. The tetragonal zirconia achieves a maximum ammonia yield of 16.03 mg h-1 mgcat.-1, superior to the other crystal forms. DEMS tests unveil the reaction pathway and theoretical calculations reveal the low free energy of -0.22 eV for nitrate adsorption at the tetragonal zirconia.

9.
Adv Mater ; 36(25): e2401221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563723

RESUMEN

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.

10.
J Clin Neurosci ; 124: 36-46, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642434

RESUMEN

Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma, and there is limited research on its tumor microenvironment (TME). Nevertheless, more and more studies have evidence that TME has essential effects on tumor cell proliferation, immune escape, and drug resistance. Thus, it is critical to elucidate the role of TME in PCNSL. The understanding of the PCNSL TME is gradually unfolding, including factors that distinguish it from systemic diffuse large B-cell lymphoma (DLBCL). The TME in PCNSL exhibits both transcriptional and spatial intratumor heterogeneity. Cellular interactions between tumor cells and stroma cells reveal immune evasion signaling. The comparative analysis between PCNSL and DLBCL suggests that PCNSL is more likely to be an immunologically deficient tumor. In PCNSL, T cell exhaustion and downregulation of macrophage immune function are accompanied by suppressive microenvironmental factors such as M2 polarized macrophages, endothelin B receptor, HLA depletion, PD-L1, and TIM-3. MMP-9, Integrin-ß1, and ICAM-1/LFA-1 play crucial roles in transendothelial migration towards the CNS, while CXCL13/CXCR5, CD44, MAG, and IL-8 are essential for brain parenchymal invasion. Further, macrophages, YKL-40, CD31, CD105, PD-1/PD-L1 axis, osteopontin, galectin-3, aggregative perivascular tumor cells, and HLA deletion may contribute to poor outcomes in patients with PCNSL. This article reviews the effect of various components of TME on the progression and prognosis of PCNSL patients to identify novel therapeutic targets.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/fisiología , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/inmunología , Pronóstico , Linfoma no Hodgkin/patología
11.
Nat Commun ; 15(1): 2950, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580635

RESUMEN

Seawater electroreduction is attractive for future H2 production and intermittent energy storage, which has been hindered by aggressive Mg2+/Ca2+ precipitation at cathodes and consequent poor stability. Here we present a vital microscopic bubble/precipitate traffic system (MBPTS) by constructing honeycomb-type 3D cathodes for robust anti-precipitation seawater reduction (SR), which massively/uniformly release small-sized H2 bubbles to almost every corner of the cathode to repel Mg2+/Ca2+ precipitates without a break. Noticeably, the optimal cathode with built-in MBPTS not only enables state-of-the-art alkaline SR performance (1000-h stable operation at -1 A cm-2) but also is highly specialized in catalytically splitting natural seawater into H2 with the greatest anti-precipitation ability. Low precipitation amounts after prolonged tests under large current densities reflect genuine efficacy by our MBPTS. Additionally, a flow-type electrolyzer based on our optimal cathode stably functions at industrially-relevant 500 mA cm-2 for 150 h in natural seawater while unwaveringly sustaining near-100% H2 Faradic efficiency. Note that the estimated price (~1.8 US$/kgH2) is even cheaper than the US Department of Energy's goal price (2 US$/kgH2).

12.
Small ; 20(31): e2400141, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38431944

RESUMEN

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2P@NiMoO4/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2P@NiMoO4/NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2, respectively, surpassing that of Ni2P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2P/NF (120 h) and Ni(OH)2/NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2-/PO4 3- from Ni2P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO-.

13.
Food Chem ; 447: 139018, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38503067

RESUMEN

Developing an accurate, cost-effective, reliable, and stable glucose detection sensor for the food industry poses a significant yet challenging endeavor. Herein, we present a silver nanoparticle-decorated titanium dioxide nanoribbon array on titanium plate (Ag@TiO2/TP) as an efficient electrode for non-enzymatic glucose detection in alkaline environments. Electrochemical evaluations of the Ag@TiO2/TP electrode reveal a broad linear response range (0.001 mM - 4 mM), high sensitivity (19,106 and 4264 µA mM-1 cm-2), rapid response time (6 s), and a notably low detection limit (0.18 µM, S/N = 3). Moreover, its efficacy in measuring glucose in beverage samples shows its practical applicability. The impressive performance and structural benefits of the Ag@TiO2/TP electrode highlight its potential in advancing electrochemical sensors for small molecule detection.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos de Carbono , Nanopartículas del Metal/química , Técnicas Electroquímicas , Plata , Glucosa/química , Electrodos
14.
Small ; 20(28): e2311431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366284

RESUMEN

Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2)-based energy systems (e.g., storing wind power as H2), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2) evolution material, can be boosted by employing tungstate (WO4 2-) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2, only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2-.

15.
Adv Mater ; 36(21): e2313086, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341608

RESUMEN

A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2SO4 electrolyte, exceeding those reported for other boron-related catalysts.

16.
J Colloid Interface Sci ; 662: 596-603, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367577

RESUMEN

Seawater electrolysis is gaining recognition as a promising method for hydrogen production. However, severe anode corrosion caused by the high concentration of chloride ions (Cl-) poses a challenge for the long-term oxygen evolution reaction. Herein, an anti-corrosion strategy of oxalate anions intercalation in NiFe layered double hydroxide on nickel foam (NiFe-C2O42- LDH/NF) is proposed. The intercalation of these highly negatively charged C2O42- serves to establish electrostatic repulsion and impede Cl- adsorption. In alkaline seawater, NiFe-C2O42- LDH/NF requires an overpotential of 337 mV to gain the large current density of 1000 mA cm-2 and operates continuously for 500 h. The intercalation of C2O42- is demonstrated to significantly boost the activity and stability of NiFe LDH-based materials during alkaline seawater oxidation.

17.
J Colloid Interface Sci ; 663: 405-412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412726

RESUMEN

Electrochemical conversion of nitrite (NO2-) contaminant to green ammonia (NH3) is a promising approach to achieve the nitrogen cycle. The slow kinetics of the complex multi-reaction process remains a serious issue, and there is still a need to design highly effective and selective catalysts. Herein, we report that molybdenum doped cobalt oxide nanoarray on titanium mesh (Mo-Co3O4/TM) acts as a catalyst to facilitate electroreduction of NO2- to NH3. Such a catalyst delivers an extremely high Faradaic efficiency of 96.9 % and a corresponding NH3 yield of 651.5 µmol h-1 cm-2 at -0.5 V with strong stability. Density functional theory calculations reveal that the introduction of Mo can induce the redistribution of electrons around Co atoms and further strengthen the adsorption of NO2-, which is the key to facilitating the catalytic performance. Furthermore, the assembled battery based on Mo-Co3O4/TM suggests its practical application value.

18.
J Neurooncol ; 166(3): 451-460, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308802

RESUMEN

PURPOSE: To assess the utility of combining contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics features with clinical variables in predicting the response to induction chemotherapy (IC) for primary central nervous system lymphoma (PCNSL). METHODS: A total of 131 patients with PCNSL (101 in the training set and 30 in the testing set) who had undergone contrast-enhanced MRI scans were retrospectively analyzed. Pyradiomics was utilized to extract radiomics features, and the clinical variables of the patients were gathered. Radiomics prediction models were developed using different combinations of feature selection methods and machine learning models, and the best combination was ultimately chosen. We screened clinical variables associated with treatment outcomes and developed clinical prediction models. The predictive performance of radiomics model, clinical model, and combined model, which integrates the best radiomics model and clinical characteristics, was independently assessed and compared using Receiver Operating Characteristic (ROC) curves. RESULTS: In total, we extracted 1598 features. The best radiomics model we selected as the best utilized T-test and Recursive Feature Elimination (RFE) for feature selection and logistic regression for model building. Serum Interleukin 2 Receptor (IL-2R) and Eastern Cooperative Oncology Group (ECOG) Score were utilized to develop a clinical predictive model for assessing the response to induction chemotherapy. The results of the testing set revealed that the combined prediction model (radiomics and IL-2R) achieved the highest area under the ROC curve at 0.868 (0.683, 0.967), followed by the radiomics model at 0.857 (0.681, 0.957), and the clinical prediction model (IL-2R and ECOG) at 0.618 (0.413, 0.797). The combined model was significantly more accurate than the clinical model, with an AUC of 0.868 compared to 0.618 (P < 0.05). While the radiomics model had slightly better predictive power than the clinical model, this difference was not statistically significant (AUC, 0.857 vs. 0.618, P > 0.05). CONCLUSIONS: Our prediction model, which combines radiomics signatures from CE-MRI with serum IL-2R, can effectively stratify patients with PCNSL before high-dose methotrexate (HD-MTX) -based chemotherapy.


Asunto(s)
Quimioterapia de Inducción , Linfoma , Humanos , Modelos Estadísticos , Pronóstico , Radiómica , Estudios Retrospectivos , Imagen por Resonancia Magnética , Sistema Nervioso Central , Linfoma/diagnóstico por imagen , Linfoma/tratamiento farmacológico
19.
Small ; 20(28): e2311055, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295001

RESUMEN

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

20.
iScience ; 27(1): 108738, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38260173

RESUMEN

High-purity hydrogen produced by water electrolysis has become a sustainable energy carrier. Due to the corrosive environments and strong oxidizing working conditions, the main challenge faced by acidic water oxidation is the decrease in the activity and stability of anodic electrocatalysts. To address this issue, efficient strategies have been developed to design electrocatalysts toward acidic OER with excellent intrinsic performance. Electronic structure modification achieved through defect engineering, doping, alloying, atomic arrangement, surface reconstruction, and constructing metal-support interactions provides an effective means to boost OER. Based on introducing OER mechanism commonly present in acidic environments, this review comprehensively summarizes the effective strategies for regulating the electronic structure to boost the activity and stability of catalytic materials. Finally, several promising research directions are discussed to inspire the design and synthesis of high-performance acidic OER electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...