Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19078, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154102

RESUMEN

Doxorubicin (DOX) is an important chemotherapeutic agent for the treatment of hematologic tumors and breast carcinoma. However, its clinical application is limited owing to severe cardiotoxicity. Pyroptosis is a form of programmed cell death linked to DOX-induced cardiotoxicity. Bone mesenchymal stem cell-derived exosomes (BMSC-Exos) and endothelial progenitor cells-derived exosomes (EPC-Exos) have a protective role in the myocardium. Here we found that BMSC-Exos could improve DOX-induced cardiotoxicity by inhibiting pyroptosis, but EPC-Exos couldn't. Compared with EPCs-Exo, BMSC-Exo-overexpressing lncRNA GHET1 more effectively suppressed pyroptosis, protecting against DOX-induced cardiotoxicity. Further studies showed that lncRNA GHET1 effectively decreased the expression of Nod-like receptor protein 3 (NLRP3), which plays a vital role in pyroptosis by binding to IGF2 mRNA-binding protein 1 (IGF2BP1), a non-catalytic posttranscriptional enhancer of NLRP3 mRNA. In summary, lncRNA GHET1 released by BMSC-Exo ameliorated DOX-induced pyroptosis by targeting IGF2BP1 to reduce posttranscriptional stabilization of NLRP3.


Asunto(s)
Doxorrubicina , Exosomas , Células Madre Mesenquimatosas , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , ARN Largo no Codificante , Animales , Masculino , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratas
2.
Cardiovasc Res ; 120(4): 403-416, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38198357

RESUMEN

AIMS: Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by a high mortality rate. Pulmonary arterial endothelium cells (PAECs) serve as a primary sensor of various environmental cues, such as shear stress and hypoxia, but PAEC dysfunction may trigger vascular remodelling during the onset of PH. This study aimed to illustrate the role of Sirtuin 7 (SIRT7) in endothelial dysfunction during PH and explore the potential therapeutic strategy for PH. METHODS AND RESULTS: SIRT7 levels were measured in human and murine experimental PH samples. Bioinformatic analysis, immunoprecipitation, and deacetylation assay were used to identify the association between SIRT7 and Krüpple-like factor 4 (KLF4), a key transcription factor essential for endothelial cell (EC) homeostasis. Sugen5416 + hypoxia (SuHx)-induced PH mouse models and cell cultures were used for the study of the therapeutic effect of SIRT7 for PH. SIRT7 level was significantly reduced in lung tissues and PAECs from PH patients and the SuHx-induced PH mouse model as compared with healthy controls. Pulmonary endothelium-specific depletion of Sirt7 increased right ventricular systolic pressure and exacerbated right ventricular hypertrophy in the SuHx-induced PH model. At the molecular level, we identified KLF4 as a downstream target of SIRT7, which deacetylated KLF4 at K228 and inhibited the ubiquitination-proteasome degradation. Thus, the SIRT7/KLF4 axis maintained PAEC homeostasis by regulating proliferation, migration, and tube formation. PAEC dysfunction was reversed by adeno-associated virus type 1 vector-mediated endothelial overexpression of Sirt7 or supplementation with nicotinamide adenine dinucleotide (NAD)+ intermediate nicotinamide riboside which activated Sirt7; both approaches successfully reversed PH phenotypes. CONCLUSION: The SIRT7/KLF4 axis ensures PAEC homeostasis, and pulmonary endothelium-specific SIRT7 targeting might constitute a PH therapeutic strategy.


Asunto(s)
Hipertensión Pulmonar , Sirtuinas , Animales , Humanos , Ratones , Endotelio Vascular/metabolismo , Hipoxia/metabolismo , Pulmón/metabolismo , Arteria Pulmonar , Sirtuinas/genética , Sirtuinas/metabolismo
4.
Nat Aging ; 3(11): 1401-1414, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37946040

RESUMEN

The stem cell theory of aging dictates that a decline in the number and/or function of stem cells causes tissue degeneration and aging; however, it still lacks unequivocal experimental support. Here, using lineage tracing and single-cell transcriptomics, we identify a population of CD133+ bone marrow-derived endothelial-like cells (ELCs) as potential endothelial progenitor cells, which contribute to tubular structures in vitro and neovascularization in vivo. We demonstrate that supplementation with wild-type and young ELCs respectively restores neovascularization and extends lifespan in progeric and naturally aged mice. Mechanistically, we identify an upregulation of farnesyl diphosphate synthase (FDPS) in aged CD133+ ELCs-a key enzyme in isoprenoid biosynthesis. Overexpression of FDPS compromises the neovascularization capacity of CD133+ ELCs, whereas FDPS inhibition by pamidronate enhances neovascularization, improves health measures and extends lifespan in aged mice. These findings highlight stem cell-based strategies for the treatment of progeria and age-related pathologies.


Asunto(s)
Células Progenitoras Endoteliales , Ratones , Animales , Células Progenitoras Endoteliales/patología , Longevidad , Neovascularización Patológica/patología , Células Madre/patología
5.
Sci Rep ; 13(1): 1279, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690700

RESUMEN

Doxorubicin (DOX) has a wide antitumor spectrum, but its adverse cardiotoxicity may lead to heart failure. Urotensin II (UII) is the most potent vasoconstrictor in mammals. It plays a role by activating the UII receptor (UT), the orphan G protein-coupled receptor (GPR14), collectively referred to as the UII/UT system. In the new version of "Chinese expert consensus on cardiac rehabilitation of chronic heart failure," it is pointed out that exercise rehabilitation is the cornerstone of cardiac rehabilitation. In this study, in vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats. It was found that the UT antagonist Urantide and exercise training improved DOX-induced cardiac insufficiency, reduced DOX-induced cardiomyocyte apoptosis, improved the structural disorder of myocardial fibers, and inhibited DOX-induced myocardial fibrosis. Further studies showed that Urantide alleviated DOX-induced cardiotoxicity by downregulating the expression levels of the p38 mitogen-activated protein kinase signaling pathway.


Asunto(s)
Cardiotoxicidad , Insuficiencia Cardíaca , Ratas , Animales , Miocitos Cardíacos , Doxorrubicina/farmacología , Insuficiencia Cardíaca/inducido químicamente , Apoptosis , Mamíferos
6.
Methods Mol Biol ; 2589: 95-110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36255620

RESUMEN

Sirtuins are identified as NAD+-dependent class III histone deacetylases (HDAC) and are involved in a variety of cellular activities, including energy metabolism, DNA repair, epigenetics, gene expression, cell proliferation, differentiation, and survival. Using genetically modified model organisms, sirtuins are proved to be one of the most conserved aging-regulatory and longevity-promoting genes/pathways among species. Of the seven sirtuins, SIRT7 is the only sirtuin that localizes in the nucleolus. SIRT7 senses endogenous and environmental stress to maintain physiological homeostasis. Sirt7 deficient and transgenic mice provide a useful tool to understand the mechanisms of aging and related pathologies. In this chapter, we summarized the most widely applied methods to understand the physiopathological function of SIRT7 in mice.


Asunto(s)
Sirtuinas , Ratones , Animales , Sirtuinas/genética , Sirtuinas/metabolismo , NAD/metabolismo , Envejecimiento/genética , Epigénesis Genética , Metabolismo Energético
7.
Front Cardiovasc Med ; 9: 931066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465455

RESUMEN

Purpose: Diabetic heart failure (DHF) or cardiomyopathy is a common complication of diabetes; however, the underlying mechanism is not clear. In the present study, the authors searched for differentially expressed genes associated with DHF and the molecular types of immune cells based on bioinformatics. Methods: The RNA expression dataset of DHF was obtained from the NCBI Gene Expression Omnibus (GEO) database. After preprocessing the data, the differentially expressed genes (DEGs) between the DHF group and the non-diabetic heart failure (NHF) group were screened and intersected with immune-related genes (IRGs) in the ImmPort database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the DAVID tool. The ssGSEA algorithm was used to evaluate immune infiltration of the heart tissue in each group. In addition, the protein-protein interaction (PPI) network and miRNA-mRNA network were constructed using the STRING online website and Cytoscape program. Finally, validation analysis was performed using animal models. Results: Eight immune-related core genes were identified. GO and KEGG showed that core genes were mainly enriched in angiogenesis and cytokine-cytokine receptor interaction. Immune infiltration results showed that activated dendritic cells, central memory CD4 T cells, central memory CD8 T cells, myeloid-derived suppressor cells (MDSCs), neutrophils, and regulatory T cells may be involved in DHF. Neutrophils may play a key role in the pathogenesis of HF in diabetes. Conclusion: Immune-related core genes and immune infiltrating cells provide a new perspective on the pathogenesis of DHF.

8.
Nat Commun ; 13(1): 7028, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396643

RESUMEN

The progressive decline of physiological function and the increased risk of age-related diseases challenge healthy aging. Multiple anti-aging manipulations, such as senolytics, have proven beneficial for health; however, the biomarkers that label in vivo senescence at systemic levels are lacking, thus hindering anti-aging applications. In this study, we generate a Glb1+/m‒Glb1-2A-mCherry (GAC) reporter allele at the Glb1 gene locus, which encodes lysosomal ß-galactosidase-an enzyme elevated in tissues of old mice. A linear correlation between GAC signal and chronological age is established in a cohort of middle-aged (9 to 13 months) Glb1+/m mice. The high GAC signal is closely associated with cardiac hypertrophy and a shortened lifespan. Moreover, the GAC signal is exponentially increased in pathological senescence induced by bleomycin in the lung. Senolytic dasatinib and quercetin (D + Q) reduce GAC signal in bleomycin treated mice. Thus, the Glb1-2A-mCherry reporter mice monitors systemic aging and function decline, predicts lifespan, and may facilitate the understanding of aging mechanisms and help in the development of anti-aging interventions.


Asunto(s)
Senescencia Celular , Longevidad , Animales , Ratones , Envejecimiento/genética , Bleomicina , Dasatinib/farmacología , Longevidad/genética , Genes Reporteros , Glicósido Hidrolasas
9.
Front Cardiovasc Med ; 9: 1025558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426231

RESUMEN

Background: Chronic endoplasmic reticulum stress (ERS) plays a crucial role in cardiovascular diseases. Thus, it can be considered a therapeutic target for these diseases. In this study, poly (D,L-lactic acid) (PDLLA) nanoparticle-eluting stents loaded with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, was fabricated to assess their ability to reduce endothelial cell apoptosis and promote re-endothelialization after stent implantation. Materials and methods: PDLLA nanoparticles loaded with TUDCA were prepared via the emulsification-solvent evaporation method. The cumulative release rates of TUDCA were measured in vitro via high-performance liquid chromatography. The carotid arteries of rabbits were subsequently implanted with stents in vivo. The rabbits were then sacrificed after 4 weeks for scanning electron microscopy. Meanwhile, TUDCA concentration in the homogenate of the peripheral blood and distal vascular tissue after stent implantation was measured. The effect of TUDCA on ERS, apoptosis, and human umbilical vein endothelial cell (HUVEC) function was investigated in vitro by performing cell migration assay, wound healing assay, cell proliferation assays, endoplasmic reticulum (ER)-specific fluorescence staining, immunofluorescence, and western blotting. Results: TUDCA nanoparticles were released slowly over 28 days. In addition, TUDCA-eluting stents enhanced re-endothelialization and accelerated the recovery of endotheliocytes in vivo. ERS and apoptosis significantly increased in H2O2-treated HUVECs in vitro. Meanwhile, TUDCA reduced apoptosis and improved function by inhibiting ERS in H2O2-treated HUVECs. Decreased rates of apoptosis and ERS were observed after silencing XBP-1s in H2O2-treated HUVECs. Conclusion: TUDCA can inhibit apoptosis and promote re-endothelialization after stent implantation by inhibiting IRE/XBP1s-related ERS. These results indicate the potential therapeutic application of TUDCA as a drug-coated stent.

10.
Toxicol Appl Pharmacol ; 452: 116179, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914558

RESUMEN

Doxorubicin (DOX) is a potent anthracycline antineoplastic drug. However, its dose-dependent cardiotoxicity limits its clinical application. Ononin is a natural isoflavone glycoside that is crucial in modulating apoptosis-related signaling pathways. In this study, we assessed the possible cardioprotective effects of ononin in DOX-induced cardiotoxicity and elucidated the underlying molecular mechanisms. In vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats, respectively. First, DOX was injected into the tail veins of Wistar rats to induce cardiomyopathy. Next, rats in the DOX + Ononin30 and DOX + Ononin60 groups were intragastrically administered ononin two weeks before DOX treatment. H9C2 cells were treated with vehicle or DOX with or without ononin. Next, 3-TYP was used to determine the relationship between endoplasmic reticulum (ER) stress and sirtuin 3 (SIRT3) expression. Ononin treatment ameliorated DOX-induced myocardial injury as determined by echocardiography. Furthermore, ononin partially restored DOX-induced cardiac dysfunction; the left ventricular ejection fraction (LVEF) and left ventricular systolic fractional shortening (LVFS) increased after pre-treatment with ononin. Further, ononin suppressed DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. The Bax/Bcl-2 ratio and 78-kD glucose-regulated protein (GRP78) and CCAAT enhancer-binding protein (CHOP) expression levels were higher in the DOX-treated group than in the control group but ononin treatment improved these parameters. These effects are associated with SIRT3 activity. Moreover, 3-TYP blocked the ononin-mediated protective effects. Hence, ononin positively affected DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, possibly mediated by stimulation of the SIRT3 pathway.


Asunto(s)
Isoflavonas , Sirtuina 3 , Animales , Apoptosis , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Estrés del Retículo Endoplásmico , Glucósidos , Isoflavonas/farmacología , Miocitos Cardíacos , Estrés Oxidativo , Ratas , Ratas Wistar , Sirtuina 3/metabolismo , Volumen Sistólico , Función Ventricular Izquierda
11.
Nat Commun ; 12(1): 5058, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433808

RESUMEN

Dietary interventions such as intermittent fasting (IF) have emerged as an attractive strategy for cancer therapies; therefore, understanding the underlying molecular mechanisms is pivotal. Here, we find SIRT7 decline markedly attenuates the anti-tumor effect of IF. Mechanistically, AMP-activated protein kinase (AMPK) phosphorylating SIRT7 at T263 triggers further phosphorylation at T255/S259 by glycogen synthase kinase 3ß (GSK3ß), which stabilizes SIRT7 by decoupling E3 ligase UBR5. SIRT7 hyperphosphorylation achieves anti-tumor activity by disrupting the SKP2-SCF E3 ligase, thus preventing SKP2-mediated K63-linked AKT polyubiquitination and subsequent activation. In contrast, GSK3ß-SIRT7 axis is inhibited by EGF/ERK2 signaling, with ERK2 inactivating GSK3ß, thus accelerating SIRT7 degradation. Unfavorably, glucose deprivation or chemotherapy hijacks the GSK3ß-SIRT7 axis via ERK2, thus activating AKT and ensuring survival. Notably, Trametinib, an FDA-approved MEK inhibitor, enhances the efficacy of combination therapy with doxorubicin and IF. Overall, we have revealed the GSK3ß-SIRT7 axis that must be fine-tuned in the face of the energetic and oncogenic stresses in malignancy.


Asunto(s)
Ayuno/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Sirtuinas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Terapia Combinada , Doxorrubicina/administración & dosificación , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteolisis , Sirtuinas/genética
12.
Biomed Pharmacother ; 130: 110534, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32711244

RESUMEN

Doxorubicin (DOX) is well-known for its potent antitumor activity but limited by its multiple and serious adverse effects. A major adverse effect is acute cardiotoxicity; yet, its mechanism has not been elucidated. Fucoidan is a multifunctional and nontoxic polysaccharide that is widely studied because of its favorable biological activities and safety. Hence, we proposed that fucoidan may play a protective role in DOX-induced acute cardiotoxicity without causing additional side effects. Sprague-Dawley rats were injected intraperitoneally with a single high dose of DOX to induce acute cardiac injury. Fucoidan was administered orally before DOX injection and AG490, a JAK2 inhibitor, was applied to verify the participation of the JAK2/STAT3 pathway. In vitro, H9C2 cells were treated with the same drugs at different concentrations and intervention times. in vivo and in vitro results demonstrated that DOX administration induced myocardial damage accompanied by acceleratory apoptosis and deficient autophagy in heart tissues or cells, which could be significantly improved by fucoidan supplement. AG490 partly abolished the cardioprotective effects of fucoidan, suggesting the involvement of JAK2 signaling. Additionally, western blotting revealed DOX-induced JAK2/STAT3 pathway activation, which was enhanced by fucoidan and weaken by AG490. Hence, fucoidan exerted a favorable effect on DOX-induced cardiotoxicity by enhancing autophagy and suppressing apoptosis in a JAK2/STAT3-dependent manner, which may provide a promising and novel therapeutic strategy against negative chemotherapy-induced effects.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/toxicidad , Fucus/química , Cardiopatías/inducido químicamente , Cardiopatías/prevención & control , Janus Quinasa 2/efectos de los fármacos , Polisacáridos/farmacología , Factor de Transcripción STAT3/efectos de los fármacos , Animales , Línea Celular , Ecocardiografía , Cardiopatías/diagnóstico por imagen , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Polisacáridos/química , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Tirfostinos/farmacología
13.
Elife ; 92020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538779

RESUMEN

The DNA damage response (DDR) is a highly orchestrated process but how double-strand DNA breaks (DSBs) are initially recognized is unclear. Here, we show that polymerized SIRT6 deacetylase recognizes DSBs and potentiates the DDR in human and mouse cells. First, SIRT1 deacetylates SIRT6 at residue K33, which is important for SIRT6 polymerization and mobilization toward DSBs. Then, K33-deacetylated SIRT6 anchors to γH2AX, allowing its retention on and subsequent remodeling of local chromatin. We show that a K33R mutation that mimics hypoacetylated SIRT6 can rescue defective DNA repair as a result of SIRT1 deficiency in cultured cells. These data highlight the synergistic action between SIRTs in the spatiotemporal regulation of the DDR and DNA repair in humans and mice.


Asunto(s)
Roturas del ADN , Daño del ADN , Reparación del ADN , Sirtuina 1/fisiología , Sirtuinas/fisiología , Acetilación , Animales , Roturas del ADN de Doble Cadena , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Ratones , Mutagénesis Sitio-Dirigida , Sirtuina 1/metabolismo , Sirtuinas/metabolismo
14.
Nucleic Acids Res ; 48(9): 4992-5005, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32239217

RESUMEN

SIRT6 deacetylase activity improves stress resistance via gene silencing and genome maintenance. Here, we reveal a deacetylase-independent function of SIRT6, which promotes anti-apoptotic gene expression via the transcription factor GATA4. SIRT6 recruits TIP60 acetyltransferase to acetylate GATA4 at K328/330, thus enhancing its chromatin binding capacity. In turn, GATA4 inhibits the deacetylase activity of SIRT6, thus ensuring the local chromatin accessibility via TIP60-promoted H3K9 acetylation. Significantly, the treatment of doxorubicin (DOX), an anti-cancer chemotherapeutic, impairs the SIRT6-TIP60-GATA4 trimeric complex, blocking GATA4 acetylation and causing cardiomyocyte apoptosis. While GATA4 hyperacetylation-mimic retains the protective effect against DOX, the hypoacetylation-mimic loses such ability. Thus, the data reveal a novel SIRT6-TIP60-GATA4 axis, which promotes the anti-apoptotic pathway to prevent DOX toxicity. Targeting the trimeric complex constitutes a new strategy to improve the safety of DOX chemotherapy in clinical application.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Epigénesis Genética , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Apoptosis , Células Cultivadas , Expresión Génica , Células HEK293 , Humanos , Lisina Acetiltransferasa 5/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Ratas , Sirtuinas/genética
15.
Sci Adv ; 6(8): eaay5556, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32128409

RESUMEN

Vascular dysfunction is a typical characteristic of aging, but its contributing roles to systemic aging and the therapeutic potential are lacking experimental evidence. Here, we generated a knock-in mouse model with the causative Hutchinson-Gilford progeria syndrome (HGPS) LmnaG609G mutation, called progerin. The Lmnaf/f ;TC mice with progerin expression induced by Tie2-Cre exhibit defective microvasculature and neovascularization, accelerated aging, and shortened life span. Single-cell transcriptomic analysis of murine lung endothelial cells revealed a substantial up-regulation of inflammatory response. Molecularly, progerin interacts and destabilizes deacylase Sirt7; ectopic expression of Sirt7 alleviates the inflammatory response caused by progerin in endothelial cells. Vascular endothelium-targeted Sirt7 gene therapy, driven by an ICAM2 promoter, improves neovascularization, ameliorates aging features, and extends life span in Lmnaf/f ;TC mice. These data support endothelial dysfunction as a primary trigger of systemic aging and highlight gene therapy as a potential strategy for the clinical treatment of HGPS and age-related vascular dysfunction.


Asunto(s)
Endotelio Vascular/metabolismo , Terapia Genética , Longevidad , Progeria/genética , Progeria/metabolismo , Sirtuinas/genética , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Células Endoteliales , Perfilación de la Expresión Génica , Terapia Genética/métodos , Humanos , Longevidad/genética , Ratones , Ratones Noqueados , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Progeria/terapia , Análisis de la Célula Individual , Vasodilatación
16.
Front Pharmacol ; 11: 598353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33597877

RESUMEN

Background: Recent studies have revealed that a novel selective sodium-glucose cotransporter 1 (SGLT1) inhibiton has shown beneficial effects in cardiovascular diseases. However, the question of whether SGLT1 inhibition influences diabetic cardiomyopathy (DCM) remains unanswered. In this study, we investigated the influence and underlying mechanism of SGLTI inhibition on DCM. Methods: SGLT1 levels were measured in diabetic patients with similar conditions who visited our hospital from January to December 2019. Wistar male rats (n = 50) were divided into five groups: control, diabetes induced by streptozotocin infusion, and diabetes treated with 0.5, 1.0, or 1.5 mg/kg mizagliflozin via stomach gavage for 12 weeks. H9C2 cardiomyocytes were treated with mizagliflozin and then exposed to a high glucose concentration (30 mmol/L). TUNEL assays were performed, and bcl2, bax, p-p38, p-Erk, p-JNK and caspase-3 levels were measured. We used siRNA and an SGLT1 overexpression plasmid to detect the effects of SGLT1. Results: SGLT1 levels were significantly elevated in DCM patients, and receiver operating characteristic (ROC) curve analysis identified SGLT1 as influencing DCM. The area under the curve (AUC) was 0.705 (p < 0.05), with 65.8% sensitivity, and 62.2% specificity. SGLT1 inhibition appeared to attenuate apoptosis in DCM via the JNK and p38 pathway. Conclusion: SGLT1 can be used as a marker for the diagnosis of DCM, and SGLT1 inhibition can attenuate apoptosis, thereby suppressing DCM development via the JNK and p38 pathway.

17.
Biochem Biophys Res Commun ; 511(2): 234-238, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30782483

RESUMEN

Circadian clock relies on a transcription and translation feedback loop (TTFL). Two transcription factors, i.e. Bmal1 and Clock, activate the transcription of Period (Per) and Cryptochrome (Cry), which inhibit their own transcription when accumulated to a critical concentration. NAD+-dependent deacylase Sirt1 deacetylates Bmal1 and Per2 to regulate circadian rhythms. Sirt6 interacts with Bmal1 to regulate clock-controlled gene (CCG) expression by local chromatin remodeling. Whether Sirt6 directly modify clock components is elusive. Here, we found that loss of Sirt6 jeopardizes circadian phase. At molecular level, Sirt6 interacts with and deacetylates Per2, thus preventing its proteasomal degradation. These data highlight an important function of Sirt6 in the direct regulation of TTFL and circadian rhythms.


Asunto(s)
Ritmo Circadiano , Proteínas Circadianas Period/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Ratones Endogámicos C57BL , Ratones Noqueados , Mapas de Interacción de Proteínas , Proteolisis , Sirtuinas/genética
18.
Nat Metab ; 1(11): 1141-1156, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-32694864

RESUMEN

The central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) synchronizes peripheral oscillators to coordinate physiological and behavioural activities throughout the body. How circadian phase coherence between the SCN and the periphery is controlled is not well understood. Here, we identify hepatic SIRT7 as an early responsive element to light that ensures circadian phase coherence in the mouse liver. The SCN-driven body temperature (BT) oscillation induces rhythmic expression of HSP70, which promotes SIRT7 ubiquitination and proteasomal degradation. Acute temperature challenge dampens the BT oscillation and causes an advanced liver circadian phase. Further, hepatic SIRT7 deacetylates CRY1, promotes its FBXL3-mediated degradation and regulates the hepatic clock and glucose homeostasis. Loss of Sirt7 in mice leads to an advanced liver circadian phase and rapid entrainment of the hepatic clock upon daytime-restricted feeding. These data identify a BT-HSP70-SIRT7-CRY1 axis that couples the mouse hepatic clock to the central pacemaker and ensures circadian phase coherence and glucose homeostasis.


Asunto(s)
Temperatura Corporal , Ritmo Circadiano , Gluconeogénesis , Luz , Hígado/metabolismo , Sirtuinas/metabolismo , Animales , Homeostasis , Ratones
19.
Gene ; 681: 52-61, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30267808

RESUMEN

The tumor necrosis factor (TNF) superfamily consists of a wide variety of inflammatory cytokine, including cell-bound and secreted proteins. These TNFs function through binding and activation of the TNF receptors for modulating TNF-associated intracellular signals. A set of mammalian TNF receptor-associated factors (TRAFs) that have emerged as the major signal transducers for the TNF receptor superfamily, play an important role in both adaptive and innate immunity. However, the existence of TRAFs and their biological functions in planarian are still unknown. In this study, a new member of TRAFs, DjTRAF2, was identified in planarian Dugesia japonica. Phylogenetic analysis revealed that DjTRAF2 could be a new member of the invertebrate TRAF2 family. Sequence analysis showed that the open reading frame of DjTRAF2 had 1353 bp in length and encoded a putative protein of 450 amino acids with a predicted molecular mass of ~51.8 kDa and an isoelectric point of 7.052. Whole-mount in situ hybridization showed that DjTRAF2 was predominantly expressed in adult and regenerative pharynx, which is an important immune organ of planarian. Quantitative real-time PCR revealed that the transcriptional level of DjTRAF2 was significantly up-regulated after induced by pathogen-associated molecular patterns (polyinosinic-polycytidylic acid, lipopolysaccharide, peptidoglycan and ß-glucan), suggesting that DjTRAF2 is involved in the immune response against pathogen invasion. Collectively, these results demonstrated that DjTRAF2 might play important roles in the innate immunity of planarian.


Asunto(s)
Planarias/genética , Factor 2 Asociado a Receptor de TNF/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Secuencia Conservada , Inmunidad Innata/genética , Filogenia , Análisis de Secuencia de ADN , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/clasificación
20.
Toxicon ; 153: 32-38, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30170166

RESUMEN

The gamma-type inhibitor of snake venom phospholipase A2 (PLIγ) is expressed extensively in livers of both venomous and non-venomous snakes. It is not clear why PLIγs from different snake species possess diverse activities. To obtain high activity PLIγs and interpret the sequence-function relationships, we used DNA shuffling to hybridize the PLIγs of Sinonatrix annularis (saPLIγ) and Elaphe carinata (ecPLIγ). Chimera PLIγs (cPLIγ) of ∼550 bp were obtained by a series of gene manipulations including DNase I digestion, primer-free PCR, and PCR amplification with PLIγs primer pair. After successful insertion of cPLIγs into pCANTAB5e phage vector, the transformed TG1 strain of Esherichia coli was achieved. The cPLIγ phage library was produced and panned in a five-pace snake venom-coated immune tube. Three high affinity cPLIγ isoforms survived two rounds of panning. Prokaryote expression by the pET28c vector was employed for production of the three cPLIγs and the two parental PLIγs. These all showed anti-hemorrhage activity with cPLIγ 2 demonstrating superior inhibition to the parent PLIγs. Sequence alignment showed that the three kinds of cPLIγ were produced by gene splicing of S. annularis and E. carinata at different sites. Primary sequence changes brought regional changes in secondary and tertiary structure, which may explain the differences in PLIγ activity.


Asunto(s)
Colubridae/genética , Barajamiento de ADN , Inhibidores de Fosfolipasa A2/química , Venenos de Serpiente/toxicidad , Secuencia de Aminoácidos , Animales , Bacteriófagos/genética , Colubridae/metabolismo , Escherichia coli , Hemorragia/tratamiento farmacológico , Hígado/metabolismo , Ratones , Inhibidores de Fosfolipasa A2/aislamiento & purificación , Inhibidores de Fosfolipasa A2/farmacología , Isoformas de Proteínas , Alineación de Secuencia , Venenos de Serpiente/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...