Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 82(4): 571-585, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34903602

RESUMEN

Pyruvate kinase M2 (PKM2) has been shown to promote tumorigenesis by facilitating the Warburg effect and enhancing the activities of oncoproteins. However, this paradigm has recently been challenged by studies in which the absence of PKM2 failed to inhibit and instead accelerated tumorigenesis in mouse models. These results seem inconsistent with the fact that most human tumors overexpress PKM2. To further elucidate the role of PKM2 in tumorigenesis, we investigated the effect of PKM2 knockout in oncogenic HRAS-driven urothelial carcinoma. While PKM2 ablation in mouse urothelial cells did not affect tumor initiation, it impaired the growth and maintenance of HRAS-driven tumors. Chemical inhibition of PKM2 recapitulated these effects. Both conditions substantially reduced complex formation of PKM2 with STAT3, their nuclear translocation, and HIF1α- and VEGF-related angiogenesis. The reduction in nuclear STAT3 in the absence of PKM2 also correlated with decreased autophagy and increased apoptosis. Time-controlled, inducible PKM2 overexpression in simple urothelial hyperplasia did not trigger tumorigenesis, while overexpression of PKM2, but not PKM1, in nodular urothelial hyperplasia with angiogenesis strongly accelerated tumorigenesis. Finally, in human patients, PKM2 was overexpressed in low-grade nonmuscle-invasive and high-grade muscle-invasive bladder cancer. Based on these data, PKM2 is not required for tumor initiation but is essential for tumor growth and maintenance by enhancing angiogenesis and metabolic addiction. The PKM2-STAT3-HIF1α/VEGF signaling axis may play a critical role in bladder cancer and may serve as an actionable therapeutic target. SIGNIFICANCE: Genetic manipulation and pharmacologic inhibition of PKM2 in mouse urothelial lesions highlight its essential role in promoting angiogenesis and metabolic addiction, events indispensable for tumor growth and maintenance.


Asunto(s)
Carcinoma de Células Transicionales/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Piruvato Quinasa/genética , Neoplasias de la Vejiga Urinaria/genética , Transporte Activo de Núcleo Celular/genética , Animales , Apoptosis/genética , Autofagia/genética , Carcinogénesis/genética , Carcinoma de Células Transicionales/irrigación sanguínea , Carcinoma de Células Transicionales/metabolismo , Línea Celular Tumoral , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Noqueados , Ratones Transgénicos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Piruvato Quinasa/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Nat Commun ; 12(1): 2047, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824349

RESUMEN

Human chromosome 9p21.3 is susceptible to inactivation in cell immortalization and diseases, such as cancer, coronary artery disease and type-2 diabetes. Although this locus encodes three cyclin-dependent kinase (CDK) inhibitors (p15INK4B, p14ARF and p16INK4A), our understanding of their functions and modes of action is limited to the latter two. Here, we show that in vitro p15INK4B is markedly stronger than p16INK4A in inhibiting pRb1 phosphorylation, E2F activity and cell-cycle progression. In mice, urothelial cells expressing oncogenic HRas and lacking p15INK4B, but not those expressing HRas and lacking p16INK4A, develop early-onset bladder tumors. The potency of CDKN2B/p15INK4B in tumor suppression relies on its strong binding via key N-terminal residues to and inhibition of CDK4/CDK6. p15INK4B also binds and inhibits enolase-1, a glycolytic enzyme upregulated in most cancer types. Our results highlight the dual inhibition of p15INK4B on cell proliferation, and unveil mechanisms whereby p15INK4B aberrations may underpin cancer and non-cancer conditions.


Asunto(s)
Ciclo Celular , Cromosomas de los Mamíferos/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Glucólisis , Aerobiosis , Secuencia de Aminoácidos , Animales , Unión Competitiva , Cruzamiento , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Cruzamientos Genéticos , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/química , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Enlace de Hidrógeno , Masculino , Ratones Transgénicos , Modelos Moleculares , Oncogenes , Penetrancia , Fosfopiruvato Hidratasa/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas p21(ras) , Homología Estructural de Proteína , Neoplasias de la Vejiga Urinaria/patología , Urotelio/metabolismo
3.
Natl Sci Rev ; 7(9): 1422-1427, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691538
4.
Mol Biol Cell ; 30(24): 2969-2984, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31577526

RESUMEN

The apical surface of the terminally differentiated mammalian urothelial umbrella cell is mechanically stable and highly impermeable, in part due to its coverage by urothelial plaques consisting of 2D crystals of uroplakin particles. The mechanism for regulating the uroplakin/plaque level is unclear. We found that genetic ablation of the highly tissue-specific sorting nexin Snx31, which localizes to plaques lining the multivesicular bodies (MVBs) in urothelial umbrella cells, abolishes MVBs suggesting that Snx31 plays a role in stabilizing the MVB-associated plaques by allowing them to achieve a greater curvature. Strikingly, Snx31 ablation also induces a massive accumulation of uroplakin-containing mitochondria-derived lipid droplets (LDs), which mediate uroplakin degradation via autophagy/lipophagy, leading to the loss of apical and fusiform vesicle plaques. These results suggest that MVBs play an active role in suppressing the excessive/wasteful endocytic degradation of uroplakins. Failure of this suppression mechanism triggers the formation of mitochondrial LDs so that excessive uroplakin membranes can be sequestered and degraded. Because mitochondrial LD formation, which occurs at a low level in normal urothelium, can also be induced by disturbance in uroplakin polymerization due to individual uroplakin knockout and by arsenite, a bladder carcinogen, this pathway may represent an inducible, versatile urothelial detoxification mechanism.


Asunto(s)
Cuerpos Multivesiculares/metabolismo , Nexinas de Clasificación/metabolismo , Urotelio/metabolismo , Animales , Femenino , Gotas Lipídicas/metabolismo , Gotas Lipídicas/fisiología , Glicoproteínas de Membrana/metabolismo , Membranas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Vejiga Urinaria/metabolismo , Uroplaquinas/metabolismo , Uroplaquinas/fisiología
5.
Mol Biol Cell ; 29(26): 3128-3143, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30303751

RESUMEN

Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles ("urothelial plaques") covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs' fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.


Asunto(s)
Especiación Genética , Oocitos/metabolismo , Ovario/metabolismo , Uroplaquinas/genética , Urotelio/metabolismo , Cigoto/metabolismo , Animales , Diferenciación Celular , Femenino , Fertilización/genética , Regulación de la Expresión Génica , Tamaño de la Camada , Masculino , Ratones , Ratones Noqueados , Oocitos/citología , Ovario/citología , Partenogénesis/genética , Fosforilación , Filogenia , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Transducción de Señal , Testículo/citología , Testículo/metabolismo , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Uroplaquinas/clasificación , Uroplaquinas/metabolismo , Urotelio/citología , Xenopus laevis , Cigoto/citología
6.
PLoS One ; 12(2): e0172416, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28192514

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0170196.].

7.
PLoS One ; 12(1): e0170196, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28099513

RESUMEN

Uroplakins are a widespread group of vertebrate integral membrane proteins that belong to two different families: UPK1a and UPK1b belong to the large tetraspanin (TSPAN) gene family, and UPK3a, UPK3b, UPK3c, UPK3d, UPK2a and UPK2b form a family of their own, the UPK2/3 tetraspanin-associated family. In a previous study, we reported that uroplakins first appeared in vertebrates, and that uroplakin tetraspanins (UPK1a and UPK1b) should have originated by duplication of an ancestor tetraspanin gene. However, the evolutionary origin of the UPK2/3 family remains unclear. In this study, we provide evidence that the UPK2/3 family originated by gene duplication and domain loss from a protoPTPRQ-like basal deuterostome gene. PTPRQs are members of the subtype R3 tyrosine phosphatase receptor (R3 PTPR) family, which are characterized by having a unique modular composition of extracellular fibronectin (FN3) repeats, a transmembrane helix, and a single intra-cytoplasmic phosphotyrosine phophatase (PTP) domain. Our assumption of a deuterostome protoPTPRQ-like gene as an ancestor of the UPK2/3 family by gene duplication and loss of its PTP and fibronectin (FN3) domains, excluding the one closest to the transmembrane helix, is based on the following: (i) phylogenetic analyses, (ii) the existence of an identical intron/exon gene pattern between UPK2/3 and the corresponding genetic region in R3 PTPRs, (iii) the conservation of cysteine patterns and protein motifs between UPK2/3 and PTPRQ proteins and, (iv) the existence in tunicates, the closest organisms to vertebrates, of two sequences related to PTPRQ; one with the full subtype R3 modular characteristic and another without the PTP domain but with a short cytoplasmic tail with some sequence similarity to that of UPK3a. This finding will facilitate further studies on the structure and function of these important proteins with implications in human diseases.


Asunto(s)
Evolución Molecular , Duplicación de Gen/genética , Dominios Proteicos/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Uroplaquina III/genética , Uroplaquina II/genética , Secuencia de Aminoácidos/genética , Animales , Minería de Datos , Bases de Datos Genéticas , Fibronectinas/genética , Humanos , Ratones , Filogenia
8.
Proc Natl Acad Sci U S A ; 113(16): 4494-9, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044107

RESUMEN

The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder.


Asunto(s)
Proteínas Bacterianas , Fimbrias Bacterianas , Infecciones por Proteus , Proteus mirabilis , Ureasa , Cálculos de la Vejiga Urinaria , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Ratones , Ratones Endogámicos CBA , Infecciones por Proteus/genética , Infecciones por Proteus/metabolismo , Infecciones por Proteus/patología , Proteus mirabilis/genética , Proteus mirabilis/metabolismo , Proteus mirabilis/patogenicidad , Ureasa/genética , Ureasa/metabolismo , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Cálculos de la Vejiga Urinaria/genética , Cálculos de la Vejiga Urinaria/metabolismo , Cálculos de la Vejiga Urinaria/microbiología , Cálculos de la Vejiga Urinaria/patología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/patogenicidad
9.
Mol Biol Cell ; 27(10): 1621-34, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27009205

RESUMEN

Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV-membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.


Asunto(s)
Queratina-20/metabolismo , Proteínas con Dominio MARVEL/metabolismo , Proteínas SNARE/metabolismo , Urotelio/citología , Urotelio/metabolismo , Animales , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Liso/metabolismo , Transporte de Proteínas , Uroplaquinas/genética , Uroplaquinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
10.
Sci Rep ; 5: 16234, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26549759

RESUMEN

During urinary tract infection (UTI), the second most common bacterial infection, dynamic interactions take place between uropathogenic E. coli (UPEC) and host urothelial cells. While significant strides have been made in the identification of the virulence factors of UPEC, our understanding of how the urothelial cells mobilize innate defenses against the invading UPEC remains rudimentary. Here we show that mouse urothelium responds to the adhesion of type 1-fimbriated UPEC by rapidly activating the canonical NF-κB selectively in terminally differentiated, superficial (umbrella) cells. This activation depends on a dual ligand/receptor system, one between FimH adhesin and uroplakin Ia and another between lipopolysaccharide and Toll-like receptor 4. When activated, all the nuclei (up to 11) of a multinucleated umbrella cell are affected, leading to significant amplification of proinflammatory signals. Intermediate and basal cells of the urothelium undergo NF-κB activation only if the umbrella cells are detached or if the UPEC persistently express type 1-fimbriae. Inhibition of NF-κB prevents the urothelium from clearing the intracellular bacterial communities, leading to prolonged bladder colonization by UPEC. Based on these data, we propose a model of dual ligand/receptor system in innate urothelial defenses against UPEC.


Asunto(s)
Adhesinas de Escherichia coli/biosíntesis , Proteínas Fimbrias/biosíntesis , Receptor Toll-Like 4/metabolismo , Infecciones Urinarias/genética , Escherichia coli Uropatógena/genética , Uroplaquina Ia/metabolismo , Adhesinas de Escherichia coli/genética , Animales , Adhesión Bacteriana/genética , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Ligandos , Lipopolisacáridos/genética , Lipopolisacáridos/metabolismo , Ratones , FN-kappa B/genética , Receptor Toll-Like 4/genética , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/patogenicidad , Uroplaquina Ia/genética , Urotelio/metabolismo , Urotelio/microbiología , Urotelio/patología
11.
Microbiol Spectr ; 3(4)2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26350322

RESUMEN

The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person's lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3-5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the important structural and functional abnormalities that predispose the urinary tract to microbial infections.


Asunto(s)
Infecciones Urinarias/inmunología , Infecciones Urinarias/fisiopatología , Sistema Urinario/anatomía & histología , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/fisiopatología , Humanos , Sistema Urinario/inmunología , Sistema Urinario/microbiología , Sistema Urinario/fisiopatología , Infecciones Urinarias/microbiología
12.
Biophys J ; 107(6): 1273-9, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25229135

RESUMEN

Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.


Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular , Fenómenos Mecánicos , Vejiga Urinaria/citología , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Ratones , Protaminas/farmacología , Vejiga Urinaria/efectos de los fármacos
13.
PLoS One ; 9(6): e99644, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24914955

RESUMEN

Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understand the mechanism by which these surface-associated uroplakins are degraded. While it is known that endocytosed uroplakin plaques are targeted to and line the multivesicular bodies (MVBs), it is unclear how these rigid-looking plaques can go to the highly curved membranes of intraluminal vesicles (ILVs). From a cDNA subtraction library, we identified a highly urothelium-specific sorting nexin, SNX31. SNX31 is expressed, like uroplakins, in terminally differentiated urothelial umbrella cells where it is predominantly associated with MVBs. Apical membrane proteins including uroplakins that are surface biotin-tagged are endocytosed and targeted to the SNX31-positive MVBs. EM localization demonstrated that SNX31 and uroplakins are both associated not only with the limiting membranes of MVBs containing uroplakin plaques, but also with ILVs. SNX31 can bind, on one hand, the PtdIns3P-enriched lipids via its N-terminal PX-domain, and, on the other hand, it binds uroplakins as demonstrated by co-immunoprecipitation and proximity ligation assay, and by its reduced membrane association in uroplakin II-deficient urothelium. The fact that in urothelial umbrella cells MVBs are the only major intracellular organelles enriched in both PtdIns3P and uroplakins may explain SNX31's MVB-specificity in these cells. However, in MDCK and other cultured cells transfected SNX31 can bind to early endosomes possibly via lipids. These data support a model in which SNX31 mediates the endocytic degradation of uroplakins by disassembling/collapsing the MVB-associated uroplakin plaques, thus enabling the uroplakin-containing (but 'softened') membranes to bud and form the ILVs for lysosomal degradation and/or exosome formation.


Asunto(s)
Diferenciación Celular , Cuerpos Multivesiculares/metabolismo , Nexinas de Clasificación/metabolismo , Uroplaquinas/metabolismo , Urotelio/citología , Urotelio/metabolismo , Animales , Biomarcadores/metabolismo , Bovinos , Membrana Celular/metabolismo , Perros , Endocitosis , Endosomas/metabolismo , Técnicas de Inactivación de Genes , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Modelos Biológicos , Cuerpos Multivesiculares/ultraestructura , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Ultracentrifugación , Urotelio/enzimología , Urotelio/ultraestructura
14.
BMC Evol Biol ; 14: 13, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24450554

RESUMEN

BACKGROUND: The recent availability of sequenced genomes from a broad array of chordates (cephalochordates, urochordates and vertebrates) has allowed us to systematically analyze the evolution of uroplakins: tetraspanins (UPK1a and UPK1b families) and their respective partner proteins (UPK2 and UPK3 families). RESULTS: We report here: (1) the origin of uroplakins in the common ancestor of vertebrates, (2) the appearance of several residues that have statistically significantly positive dN/dS ratios in the duplicated paralogs of uroplakin genes, and (3) the existence of strong coevolutionary relationships between UPK1a/1b tetraspanins and their respective UPK2/UPK3-related partner proteins. Moreover, we report the existence of three new UPK2/3 family members we named UPK2b, 3c and 3d, which will help clarify the evolutionary relationships between fish, amphibian and mammalian uroplakins that may perform divergent functions specific to these different and physiologically distinct groups of vertebrates. CONCLUSIONS: Since our analyses cover species of all major chordate groups this work provides an extremely clear overall picture of how the uroplakin families and their partner proteins have evolved in parallel. We also highlight several novel features of uroplakin evolution including the appearance of UPK2b and 3d in fish and UPK3c in the common ancestor of reptiles and mammals. Additional studies of these novel uroplakins should lead to new insights into uroplakin structure and function.


Asunto(s)
Evolución Molecular , Tetraspaninas/genética , Uroplaquinas/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Familia de Multigenes , Filogenia , Alineación de Secuencia , Tetraspaninas/química , Uroplaquinas/química , Vertebrados/clasificación
15.
Dev Cell ; 26(5): 469-482, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23993789

RESUMEN

The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome.


Asunto(s)
Queratina-5/biosíntesis , Células Madre/citología , Sistema Urinario/metabolismo , Uroplaquinas/biosíntesis , Urotelio/crecimiento & desarrollo , Animales , Transporte Biológico/genética , Diferenciación Celular/genética , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Regeneración/genética , Sistema Urinario/citología , Sistema Urinario/crecimiento & desarrollo , Uroplaquinas/metabolismo , Urotelio/citología , Cicatrización de Heridas
16.
J Biol Chem ; 287(14): 11011-7, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22315218

RESUMEN

Lipid bilayers and biological membranes are freely permeable to CO(2), and yet partial CO(2) pressure in the urine is 3-4-fold higher than in blood. We hypothesized that the responsible permeability barrier to CO(2) resides in the umbrella cell apical membrane of the bladder with its dense array of uroplakin complexes. We found that disrupting the uroplakin layer of the urothelium resulted in water and urea permeabilities (P) that were 7- to 8-fold higher than in wild type mice with intact urothelium. However, these interventions had no impact on bladder P(CO2) (∼1.6 × 10(-4) cm/s). To test whether the observed permeability barrier to CO(2) was due to an unstirred layer effect or due to kinetics of CO(2) hydration, we first measured the carbonic anhydrase (CA) activity of the bladder epithelium. Finding none, we reduced the experimental system to an epithelial monolayer, Madin-Darby canine kidney cells. With CA present inside and outside the cells, we showed that P(CO2) was unstirred layer limited (∼7 × 10(-3) cm/s). However, in the total absence of CA activity P(CO2) decreased 14-fold (∼ 5.1 × 10(-4) cm/s), indicating that now CO(2) transport is limited by the kinetics of CO(2) hydration. Expression of aquaporin-1 did not alter P(CO2) (and thus the limiting transport step), which confirmed the conclusion that in the urinary bladder, low P(CO2) is due to the lack of CA. The observed dependence of P(CO2) on CA activity suggests that the tightness of biological membranes to CO(2) may uniquely be regulated via CA expression.


Asunto(s)
Dióxido de Carbono/metabolismo , Uroplaquina III/metabolismo , Uroplaquina II/metabolismo , Urotelio/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Línea Celular , Perros , Técnicas de Inactivación de Genes , Ratones , Permeabilidad/efectos de los fármacos , Uroplaquina II/deficiencia , Uroplaquina II/genética , Uroplaquina III/deficiencia , Uroplaquina III/genética , Urotelio/efectos de los fármacos , Urotelio/enzimología
17.
Mol Biol Cell ; 23(7): 1354-66, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22323295

RESUMEN

The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.


Asunto(s)
Exocitosis/fisiología , Proteínas de Transporte de Membrana/metabolismo , Proteínas de la Mielina/metabolismo , Proteolípidos/metabolismo , Uroplaquinas/metabolismo , Urotelio/citología , Urotelio/metabolismo , Animales , Secuencia de Bases , Línea Celular , Membrana Celular/metabolismo , Perros , Células Epiteliales/metabolismo , Técnicas de Silenciamiento del Gen , Microdominios de Membrana/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Inmunoelectrónica , Modelos Biológicos , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/deficiencia , Proteínas de la Mielina/genética , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito , Transporte de Proteínas , Proteolípidos/antagonistas & inhibidores , Proteolípidos/deficiencia , Proteolípidos/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Uroplaquinas/deficiencia , Uroplaquinas/genética
18.
Am J Physiol Renal Physiol ; 299(2): F387-95, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20427471

RESUMEN

Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.


Asunto(s)
Doxiciclina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , ARN Mensajero/biosíntesis , Urotelio/efectos de los fármacos , Animales , Línea Celular , Proliferación Celular , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Estudios de Factibilidad , Genes Reporteros , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Histonas/metabolismo , Integrasas/genética , Operón Lac , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas , Protaminas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Uroplaquina II , Urotelio/metabolismo
19.
Nature ; 463(7284): E10-1; discussion E11, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20182462

RESUMEN

The longstanding concept that corneal epithelial stem cells reside mainly in the limbus is supported by the absence of major corneal epithelial differentiation markers, that is, K3 and K12 keratins, in limbal basal cells (these markers are expressed, however, in corneal basal cells, thus distinguishing the mode of keratin expression in corneal epithelium from that of all other stratified epithelia), the centripetal migration of corneal epithelial cells, the exclusive location of slow-cycling cells in the limbal basal layer, the superior in vitro proliferative potential of limbal epithelial cells, and the transplanted limbal cells' ability to reconstitute corneal epithelium in vivo (reviewed in refs 1-4). Moreover, previous data indicate that corneal and conjunctival epithelia represent two separate cell lineages (reviewed in refs 1-4). Majo et al. suggested, however, that corneal and conjunctival epithelia are equipotent, and that identical oligopotent stem cells are present throughout the corneal, limbal and conjunctival epithelia. We point out here that these suggestions are inconsistent with many known growth, differentiation and cell migration properties of the anterior ocular epithelia.


Asunto(s)
Movimiento Celular , Epitelio Corneal/citología , Limbo de la Córnea/citología , Células Madre/citología , Animales , Bovinos , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Conjuntiva/citología , Células Caliciformes/citología , Humanos , Ratones , Modelos Biológicos , Conejos , Reproducibilidad de los Resultados , Ovinos , Porcinos
20.
Am J Physiol Regul Integr Comp Physiol ; 298(3): R534-47, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20032263

RESUMEN

NGF has been suggested to play a role in urinary bladder dysfunction by mediating inflammation, as well as morphological and functional changes, in sensory and sympathetic neurons innervating the urinary bladder. To further explore the role of NGF in bladder sensory function, we generated a transgenic mouse model of chronic NGF overexpression in the bladder using the urothelium-specific uroplakin II (UPII) promoter. NGF mRNA and protein were expressed at higher levels in the bladders of NGF-overexpressing (NGF-OE) transgenic mice compared with wild-type littermate controls from postnatal day 7 through 12-16 wk of age. Overexpression of NGF led to urinary bladder enlargement characterized by marked nerve fiber hyperplasia in the submucosa and detrusor smooth muscle and elevated numbers of tissue mast cells. There was a marked increase in the density of CGRP- and substance P-positive C-fiber sensory afferents, neurofilament 200-positive myelinated sensory afferents, and tyrosine hydroxylase-positive sympathetic nerve fibers in the suburothelial nerve plexus. CGRP-positive ganglia were also present in the urinary bladders of transgenic mice. Transgenic mice had reduced urinary bladder capacity and an increase in the number and amplitude of nonvoiding bladder contractions under baseline conditions in conscious open-voiding cystometry. These changes in urinary bladder function were further associated with an increased referred somatic pelvic hypersensitivity. Thus, chronic urothelial NGF overexpression in transgenic mice leads to neuronal proliferation, focal increases in urinary bladder mast cells, increased urinary bladder reflex activity, and pelvic hypersensitivity. NGF-overexpressing mice may, therefore, provide a useful transgenic model for exploring the role of NGF in urinary bladder dysfunction.


Asunto(s)
Factor de Crecimiento Nervioso/genética , Vejiga Urinaria Hiperactiva/fisiopatología , Vejiga Urinaria/fisiología , Urotelio/fisiología , Animales , Peso Corporal , Cistitis/patología , Cistitis/fisiopatología , Expresión Génica/fisiología , Mastocitos/patología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso/inervación , Músculo Liso/patología , Músculo Liso/fisiología , Factor de Crecimiento Nervioso/metabolismo , Tamaño de los Órganos , ARN Mensajero/metabolismo , Reflejo Abdominal/fisiología , Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/fisiología , Sistema Nervioso Simpático/patología , Sistema Nervioso Simpático/fisiopatología , Vejiga Urinaria/inervación , Vejiga Urinaria/patología , Vejiga Urinaria Hiperactiva/patología , Micción/fisiología , Uroplaquina II , Urotelio/inervación , Urotelio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...