Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Int J Med Sci ; 21(9): 1738-1755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006851

RESUMEN

Background and Objectives: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder often exacerbated by stress, influencing the brain-gut axis (BGA). BGA dysregulation, disrupted intestinal barrier function, altered visceral sensitivity and immune imbalance defects underlying IBS pathogenesis have been emphasized in recent investigations. Phosphoproteomics reveals unique phosphorylation details resulting from environmental stress. Here, we employ phosphoproteomics to explore the molecular mechanisms underlying IBS-like symptoms, mainly focusing on the role of ZO-1 and IL-1RAP phosphorylation. Materials and Methods: Morris water maze (MWM) was used to evaluate memory function for single prolonged stress (SPS). To assess visceral hypersensitivity of IBS-like symptoms, use the Abdominal withdrawal reflex (AWR). Colonic bead expulsion and defecation were used to determine fecal characteristics of the IBS-like symptoms. Then, we applied a phosphoproteomic approach to BGA research to discover the molecular mechanisms underlying the process of visceral hypersensitivity in IBS-like mice following SPS. ZO-1, p-S179-ZO1, IL-1RAP, p-S566-IL-1RAP and GFAP levels in BGA were measured by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay to validate phosphorylation quantification. Fluorescein isothiocyanate-dextran 4000 and electron-microscopy were performed to observe the structure and function of the intestinal epithelial barrier. Results: The SPS group showed changes in learning and memory ability. SPS exposure affects visceral hypersensitivity, increased fecal water content, and significant diarrheal symptoms. Phosphoproteomic analysis displayed that p-S179-ZO1 and p-S566-IL-1RAP were significantly differentially expressed following SPS. In addition, p-S179-ZO1 was reduced in mice's DRG, colon, small intestine, spinal and hippocampus and intestinal epithelial permeability was increased. GFAP, IL-1ß and p-S566-IL-1RAP were also increased at the same levels in the BGA. And IL-1ß showed no significant difference was observed in serum. Our findings reveal substantial alterations in ZO-1 and IL-1RAP phosphorylation, correlating with increased epithelial permeability and immune imbalance. Conclusions: Overall, decreased p-S179-ZO1 and increased p-S566-IL-1RAP on the BGA result in changes to tight junction structure, compromising the structure and function of the intestinal epithelial barrier and exacerbating immune imbalance in IBS-like stressed mice.


Asunto(s)
Eje Cerebro-Intestino , Modelos Animales de Enfermedad , Síndrome del Colon Irritable , Proteína de la Zonula Occludens-1 , Animales , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/patología , Proteína de la Zonula Occludens-1/metabolismo , Ratones , Fosforilación , Masculino , Eje Cerebro-Intestino/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Humanos , Ratones Endogámicos C57BL
2.
Foods ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38890956

RESUMEN

L-Arabinose isomerase (L-AI) has been commonly used as an efficient biocatalyst to produce D-tagatose via the isomerization of D-galactose. However, it remains a significant challenge to efficiently synthesize D-tagatose using the native (wild type) L-AI at an industrial scale. Hence, it is extremely urgent to redesign L-AI to improve its catalytic efficiency towards D-galactose, and herein a structure-based molecular modification of Lactobacillus plantarum CY6 L-AI (LpAI) was performed. Among the engineered LpAI, both F118M and F279I mutants showed an increased D-galactose isomerization activity. Particularly, the specific activity of double mutant F118M/F279I towards D-galactose was increased by 210.1% compared to that of the wild type LpAI (WT). Besides the catalytic activity, the substrate preference of F118M/F279I was also largely changed from L-arabinose to D-galactose. In the enzymatic production of D-tagatose, the yield and conversion ratio of F118M/F279I were increased by 81.2% and 79.6%, respectively, compared to that of WT. Furthermore, the D-tagatose production of whole cells expressing F118M/F279I displayed about 2-fold higher than that of WT cell. These results revealed that the designed site-directed mutagenesis is useful for improving the catalytic efficiency of LpAI towards D-galactose.

3.
Adv Biol (Weinh) ; : e2400084, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880850

RESUMEN

Site-directed mutagenesis for creating point mutations, sometimes, gives rise to plasmids carrying variable number tandem repeats (VNTRs) locally, which are arbitrarily regarded as polymerase chain reaction (PCR) related artifacts. Here, the alternative end-joining mechanism is reported rather than PCR artifacts accounts largely for that VNTRs formation and expansion. During generating a point mutation on GPLD1 gene, an unexpected formation of VNTRs employing the 31 bp mutagenesis primers is observed as the repeat unit in the pcDNA3.1-GPLD1 plasmid. The 31 bp VNTRs are formed in 24.75% of the resulting clones with copy number varied from 2 to 13. All repeat units are aligned with the same orientation as GPLD1 gene. 43.54% of the repeat junctions harbor nucleotide mutations while the rest don't. Their demonstrated short primers spanning the 3' part of the mutagenesis primers are essential for initial creation of the 2-copy tandem repeats (TRs) in circular plasmids. The dimerization of mutagenesis primers by the alternative end-joining in a correct orientation is required for further expansion of the 2-copy TRs. Lastly, a half-double priming strategy is established, verified the findings and offered a simple method for VNTRs creation on coding genes in circular plasmids without junction mutations.

4.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 988-999, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856406

RESUMEN

We propose a model-driven projected algebraic reconstruction technique (PART)-network (PART-Net) that leverages the advantages of the traditional model-based method and the neural network to improve the imaging quality of diffuse fluorescence tomography. In this algorithm, nonnegative prior information is incorporated into the ART iteration process to better guide the optimization process, and thereby improve imaging quality. On this basis, PART in conjunction with a residual convolutional neural network is further proposed to obtain high-fidelity image reconstruction. The numerical simulation results demonstrate that the PART-Net algorithm effectively improves noise robustness and reconstruction accuracy by at least 1-2 times and exhibits superiority in spatial resolution and quantification, especially for a small-sized target (r=2m m), compared with the traditional ART algorithm. Furthermore, the phantom and in vivo experiments verify the effectiveness of the PART-Net, suggesting strong generalization capability and a great potential for practical applications.

5.
J Colloid Interface Sci ; 671: 34-45, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38788422

RESUMEN

Exploiting the high-entropy alloy (HEA) electrocatalysts with the synergistic effect of multi-metal components is an effective approach to address the slow kinetics and undesirable stability of the oxygen evolution reaction (OER) in Zn-air batteries (ZABs), but still faces many challenges. In this study, a multimetallic Metal-organic framework (MOF)-derived HEA catalyst was successfully fabricated on carbon fiber as a flexible self-supporting electrode (denoted as CC@FeCoNiMoRu-HEA/C) for high-performance liquid/flexible ZABs using a facile and cost-effective strategy. The three-dimensional (3D) highly open network framework and hierarchical porous structure accelerate the mass transport of OH-/O2 and charge transfer. The electronic structure adjustment, lattice defects and high entropy effects enable the CC@FeCoNiMoRu-HEA/C catalysts to perform high OER catalytic activity and strong durability while reducing the Ru content and lowering the economic cost. In situ Raman spectra and XPS results reveal the generation of metal-OOH intermediates on the HEA surface during the OER process. In a practical demonstration, the liquid ZAB assembled with CC@FeCoNiMoRu-HEA/C + Pt/C as the air electrode offers stable open-circuit voltage, large power density, excellent specific capacity and satisfactory cycle life, outperforming the commercial RuO2 + Pt/C-based reference ZAB. More attractively, the flexible solid-state ZAB also achieves fast dynamic response, high peak power density, robust cycling stability as well as favorable mechanical flexibility, indicating a promising application prospect in future flexible electronics and wearable devices. This work provides a viable pathway to develop low precious metal-loaded HEAs as advanced OER self-supporting electrocatalysts and realize high-performance flexible energy storage devices.

6.
Adv Sci (Weinh) ; : e2402890, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38810102

RESUMEN

Copper-catalyzed C─H oxygenation has drawn considerable attention in mechanistic studies. However, a comprehensive investigation combining radical pathways with a metal-catalytic cycle is challenged by the intricate organic radicals and metallic intermediates. Herein, an online coupled EPR/UV-vis/near-IR detecting method is developed to simultaneously monitor both reactive radical species and copper complex intermediates during the reaction. Focusing on copper-catalyzed phenol oxygenation with cumene hydroperoxide, the short-lived alkylperoxyl radical (EPR signal at g = 2.0143) as well as the unexpected square planar Cu(II)-alkoxyl radical complex (near-IR signal at 833 nm) are unveiled during the reaction, in addition to the observable phenoxyl radical in EPR, quinone product in UV-vis, and Cu(II) center in EPR. With a comprehensive picture of diverse intermediates evolving over the same timeline, a novel Cu(I)/Cu(II) proposed relay-catalyzed sequential radical pathway. In this sequence, Cu(II) activates hydroperoxide through Cu(II)-OOR into the alkylperoxide radical, while the reaction between Cu(I) and hydroperoxide leads to Cu(II)(•OR)OH with high H-atom abstracting activity. These results provide a thorough understanding of the Cu(I)/Cu(II) relay catalysis for phenol oxygenation, setting the stage for mechanistic investigations into intricate radical reactions promoted by metallic complexes.

7.
Hortic Res ; 11(5): uhae077, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779140

RESUMEN

How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, Triplostegia glandulifera (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in T. glandulifera that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in T. glandulifera. A series of genes putatively associated with alpine adaptation (e.g. CBFs, ERF-VIIs, and RAD51C) exhibited higher expression levels in T. glandulifera than in its low-elevation relative, Lonicera japonica. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of T. glandulifera and L. japonica, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. CNLs, prRLPs, and XII RLKs), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. RAD1, DMC1, and MSH3) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.

8.
Clin Transl Sci ; 17(5): e13823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771157

RESUMEN

This study aims to investigate the mechanism of platelet activation-induced thrombosis in patients with acute non-ST segment elevation myocardial infarction (NSTEMI) by detecting the expression of autophagy-associated proteins in platelets of patients with NSTEMI. A prospective study was conducted on 121 patients with NSTEMI who underwent emergency coronary angiography and optical coherence tomography. The participants were divided into two groups: the ST segment un-offset group (n = 64) and the ST segment depression group (n = 57). We selected a control group of 60 patients without AMI during the same period. The levels of autophagy-associated proteins and the expression of autophagy-associated proteins in platelets were measured using immunofluorescence staining and Western blot. In NSTEMI, the prevalence of red thrombus was higher in the ST segment un-offset myocardial infarction (STUMI) group, whereas white thrombus was more common in the ST segment depression myocardial infarction (STDMI) group. Furthermore, the platelet aggregation rate was significantly higher in the white thrombus group compared with the red thrombus group. Compared with the control group, the autophagy-related protein expression decreased, and the expression of αIIbß3 increased in NSTEMI. The overexpression of Beclin1 could activate platelet autophagy and inhibit the expression of αIIbß3. The results suggested that the increase in platelet aggregation rate in patients with NSTEMI may be potentially related to the change in autophagy. And the overexpression of Beclin1 could reduce the platelet aggregation rate by activating platelet autophagy. Our findings demonstrated that Beclin1 could be a potential therapeutic target for inhibiting platelet aggregation in NSTEMI.


Asunto(s)
Autofagia , Beclina-1 , Plaquetas , Infarto del Miocardio sin Elevación del ST , Activación Plaquetaria , Trombosis , Humanos , Beclina-1/metabolismo , Masculino , Femenino , Infarto del Miocardio sin Elevación del ST/sangre , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Plaquetas/metabolismo , Trombosis/sangre , Trombosis/metabolismo , Angiografía Coronaria , Agregación Plaquetaria , Estudios de Casos y Controles , Tomografía de Coherencia Óptica , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo
9.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594616

RESUMEN

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Asunto(s)
Microbiota , Verticillium , Verticillium/fisiología , Gossypium/genética , Gossypium/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Semillas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
10.
Biomed Opt Express ; 15(4): 2078-2093, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633070

RESUMEN

To alleviate the ill-posedness of diffuse fluorescence tomography (DFT) reconstruction and improve imaging quality and speed, a model-derived deep-learning method is proposed by combining extended Kalman filtering (EKF) with a long short term memory (LSTM) neural network, where the iterative process parameters acquired by implementing semi-iteration EKF (SEKF) served as inputs to the LSTM neural network correction model for predicting the optimal fluorescence distributions. To verify the effectiveness of the SEKF-LSTM algorithm, a series of numerical simulations, phantom and in vivo experiments are conducted, and the experimental results are quantitatively evaluated and compared with the traditional EKF algorithm. The simulation experimental results show that the proposed new algorithm can effectively improve the reconstructed image quality and reconstruction speed. Importantly, the LSTM correction model trained by the simulation data also obtains satisfactory results in the experimental data, suggesting that the SEKF-LSTM algorithm possesses strong generalization ability and great potential for practical applications.

11.
Adv Mater ; 36(27): e2402379, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655900

RESUMEN

Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.


Asunto(s)
Histidina , Hidrogeles , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Hidrogeles/química , Humanos , Histidina/química , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/diagnóstico , Línea Celular Tumoral , Separación Celular/métodos , Polímeros/química , Impresión Molecular/métodos
12.
Cell Rep Med ; 5(5): 101525, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38663398

RESUMEN

Spinal cord injury (SCI) increases the risk of cardiometabolic disorders, including hypertension, dyslipidemia, and insulin resistance. Not only does SCI lead to pathological expansion of adipose tissue, but it also leads to ectopic lipid accumulation in organs integral to glucose and insulin metabolism. The pathophysiological changes that underlie adipose tissue dysfunction after SCI are unknown. Here, we find that SCI exacerbates lipolysis in epididymal white adipose tissue (eWAT). Whereas expression of the α2δ1 subunit of voltage-gated calcium channels increases in calcitonin gene-related peptide-positive dorsal root ganglia neurons that project to eWAT, conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Furthermore, α2δ1 pharmacological blockade through systemic administration of gabapentin also normalizes eWAT lipolysis after SCI, preventing ectopic lipid accumulation in the liver. Thus, our study provides insight into molecular causes of maladaptive sensory processing in eWAT, facilitating the development of strategies to reduce metabolic and cardiovascular complications after SCI.


Asunto(s)
Tejido Adiposo Blanco , Homeostasis , Lipólisis , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Lipólisis/efectos de los fármacos , Masculino , Ratones , Tejido Adiposo Blanco/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/genética
13.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594370

RESUMEN

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Asunto(s)
Resistencia a Antineoplásicos , Amplificación de Genes , Metotrexato , Tetrahidrofolato Deshidrogenasa , Humanos , Metotrexato/farmacología , Resistencia a Antineoplásicos/genética , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Antimetabolitos Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica/métodos
14.
J Agric Food Chem ; 72(18): 10163-10178, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38653191

RESUMEN

Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.


Asunto(s)
Bacterias , Carboxiliasas , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/química , Bacterias/genética , Bacterias/enzimología , Bacterias/metabolismo , Hongos/genética , Hongos/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Biocatálisis , Oxalatos/metabolismo , Oxalatos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Regulación Enzimológica de la Expresión Génica , Humanos , Catálisis , Animales
15.
J Agric Food Chem ; 72(14): 7919-7932, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554092

RESUMEN

Nine caffeoyl derivatives (1-9), including two new dicaffeoyl glycosides, brevicaudatosides A and B (1 and 2), and six flavonoids (10-15), were identified from overground Clematis brevicaudata DC. Compounds 1 and 13 exhibited significant oral toxicities against Acyrthosiphon pisum Harris with LC50 (half-lethal concentration) values of 0.12 and 0.28 mM, respectively. Meanwhile, compounds 1, 8, 10, 13, and 15 showed remarkable repellent effects against A. pisum with the repellent indexes valued at 1.00 under 50-200 µg/mL at 24 h. Compounds 1 and 8 also displayed moderate antifeedant activities against Plutella xylostella L. The shrunken bodies, especially for wizened cauda, and the ultrastructural damages of microvilli, mitochondrion, nucleus, and endoplasmic reticulum in midgut were toxic symptoms of A. pisum caused by 1 and 13. The inhibition of Chitinase was the main reason for their potent insecticidal activities. This study provided valuable pieces of evidence for the high value-added application of caffeoyl and flavonoid derivatives from C. brevicaudata as novel plant-origin biopesticides for crop protection.


Asunto(s)
Productos Biológicos , Clematis , Insecticidas , Mariposas Nocturnas , Animales , Insecticidas/farmacología , Insecticidas/química , Clematis/química , Flavonoides/farmacología , Productos Biológicos/farmacología , Protección de Cultivos
16.
Biochem Biophys Res Commun ; 709: 149821, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38537597

RESUMEN

At the end of 2019, an unprecedented outbreak of novel coronavirus pneumonia ravaged the global landscape, inflicting profound harm upon society. Following numerous cycles of transmission, we find ourselves in an epoch where the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coexists alongside influenza viruses (Flu A). Swift and accurate diagnosis of SARS-CoV-2 and Flu A is imperative to stem the spread of these maladies and administer appropriate treatment. Presently, colloidal gold-based lateral flow immunoassays (Au-LFIAs) constructed through electrostatic adsorption are beset by challenges such as diminished sensitivity and feeble binding stability. In this context, we propose the adoption of black polylevodopa nanoparticles (PLDA NPs) featuring abundant carboxyl groups as labeling nanomaterials in LFIA to bolster the stability and sensitivity of SARS-CoV-2 antigens and influenza A virus identifications. The engineered PLDA-LFIAs exhibit the capacity to detect SARS-CoV-2 and Flu A within 30 min, boasting a detection threshold of 5 pg/ml for the SARS-CoV-2 antigen and 0.1 ng/ml for the Flu A H1N1 antigen, thereby underscoring their heightened sensitivity relative to Au-LFIAs. These PLDA-LFIAs hold promise for the early detection of SARS-CoV-2 and Flu A, underscoring the potential of PLDA NPs as a discerning labeling probe to heighten the sensitivity of LFIA across diverse applications.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Inmunoensayo/métodos , Cromatografía de Afinidad , Sensibilidad y Especificidad
17.
Cancer Biol Ther ; 25(1): 2323768, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38465861

RESUMEN

Double minutes (DMs), extrachromosomal gene fragments found within certain tumors, have been noted to carry onco- and drug resistance genes contributing to tumor pathogenesis and progression. After screening for SUMO-related molecule expression within various tumor sample and cell line databases, we found that SUMO-conjugating enzyme UBC9 has been associated with genome instability and tumor cell DM counts, which was confirmed both in vitro and in vivo. Karyotyping determined DM counts post-UBC9 knockdown or SUMOylation inhibitor 2-D08, while RT-qPCR and Western blot were used to measure DM-carried gene expression in vitro. In vivo, fluorescence in situ hybridization (FISH) identified micronucleus (MN) expulsion. Western blot and immunofluorescence staining were then used to determine DNA damage extent, and a reporter plasmid system was constructed to detect changes in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Our research has shown that UBC9 inhibition is able to attenuate DM formation and lower DM-carried gene expression, in turn reducing tumor growth and malignant phenotype, via MN efflux of DMs and lowering NHEJ activity to increase DNA damage. These findings thus reveal a relationship between heightened UBC9 activity, increased DM counts, and tumor progression, providing a potential approach for targeted therapies, via UBC9 inhibition.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Humanos , Núcleo Celular , Hibridación Fluorescente in Situ
18.
Glob Chall ; 8(3): 2300140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486929

RESUMEN

Fungi adapt to their surroundings, modifying their behaviors and composition under different conditions like nutrient availability and environmental stress. This perspective examines how a basic understanding of fungal genetics and the different ways that fungi can be influenced by their surroundings can be leveraged toward the production of functional mycelium materials. Simply put, within the constraints of a given genetic script, both the quality and quantity of fungal mycelium are shaped by what they eat and where they grow. These two levers, encompassing their global growth environment, can be turned toward different materials outcomes. The final properties of myco-materials are thus intimately shaped by the conditions of their growth, enabling the design of new biobased and biodegradable material constructions for applications that have traditionally relied on petroleum-based chemicals.This perspective highlights aspects of fungal genetics and environmental adaptation that have potential materials science implications, along the way touching on key studies, both to situate the state of the art within the field and to punctuate the viewpoints of the authors. Finally, this work ends with future perspectives, reinforcing key topics deemed important to consider in emerging myco-materials research.

19.
Medicine (Baltimore) ; 103(9): e37357, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428890

RESUMEN

OBJECTIVE: This study aimed to examine the changes in serum Low Density Lipoprotein Cholesterol (LDL-C) and Soluble Growth Stimulating Expressed Gene 2 Protein (sST2) among Heart Failure (HF) patients with varying ejection fractions and their clinical significance, providing a reference for the clinical assessment of HF severity. METHODS: A total of 238 HF patients treated in our hospital's cardiology department from September 2019 to December 2021 were selected; 68 patients hospitalized in the same period were selected as the control group. General information, LDL-C and echocardiographic results of admitted patients were collected. According to LVEF results and the latest European Society of Cardiology standards in 2021, HF patients were categorized into those with HFpEF (n = 95), HFmrEF (n = 60), and HFrEF (n = 83). Meanwhile, venous blood was collected to determine sST2 and NT-proBNP to compare and analyze the changes and clinical significance of sST2 and LDL-C across the groups. RESULTS: Compared to the control group, the HF group showed significant differences in age, gender, heart rate, smoking history, history of atrial fibrillation, history of diabetes, LVEDD, LVEF, sST2, and NT-proBNP levels (P < .05), but not in LDL-C levels. Significant differences (P < .05) were also found among the 3 HF groups in terms of age, gender, history of atrial fibrillation, LVEDD, LVEF, LDL-C, sST2, and NT-proBNP levels, with an increase in LVEDD, LDL-C, sST2, and NT-proBNP values as the ejection fraction decreased. ROC curve analysis indicated that the area under the curve (AUC) for sST2 in diagnosing HF was 0.915 (P < .05), with an optimal cutoff value of 23.71 ng/mL, a sensitivity of 76.5%, and a specificity of 95.6%; LDL-C was not a significant diagnostic marker for HF (P > .05). Coronary artery disease, NT-proBNP, and sST2 were identified as risk factors for HF. With each unit increase in coronary artery disease, the risk of HF increased by 36.3%; for NT-proBNP, the risk increased by 1.3% per unit; and for sST2, it increased by 18.3% per unit. CONCLUSION: As the ejection fraction decreases in HF patients, serum sST2 and LDL-C values progressively increase, which is clinically significant for predicting the severity of HF. sST2 is an independent risk factor for HF and can enhance the diagnostic accuracy for HF.


Asunto(s)
Fibrilación Atrial , Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Humanos , Biomarcadores , Pronóstico , Volumen Sistólico , Relevancia Clínica , LDL-Colesterol , Péptido Natriurético Encefálico , Fragmentos de Péptidos
20.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474562

RESUMEN

Regulator of ribosome synthesis 1 (RRS1), a crucial regulatory factor in ribosome biogenesis, exerts a remarkable impact on the progression of breast cancer (BC). However, the exact mechanisms and pathways have not yet been fully elucidated. To investigate the impact of RRS1 on BC growth and metastasis, along with its underlying mechanisms. We discovered that RRS1 is overexpressed in BC tissues and cell lines. This study aims to regulate the level of RRS1 through lentiviral transfection technology to explore its potential function in BC cells. Knockdown of RRS1 resulted in the inhibition of cell proliferation, invasion, and migration, whereas overexpression had the opposite effects. We firstly identified the interaction between RRS1 and Glucose-Regulated Protein 78 (GRP78) using Co-immunoprecipitation (Co-IP) combined with mass spectrometry analysis, providing evidences of co-localization and positive regulation between RRS1 and GRP78. We observed that RRS1 inhibited the degradation of GRP78 through the ubiquitin-proteasome pathway, resulting in the stabilization of GRP78. In addition, our findings suggested that RRS1 promoted BC progression by activating the GRP78-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In conclusion, this newly discovered RRS1/GRP78 signaling axis provides a molecular and theoretical basis for further exploring the mechanisms of breast cancer invasion and metastasis.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Chaperón BiP del Retículo Endoplásmico , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ribosomas/metabolismo , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...