Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993144

RESUMEN

Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.

2.
Adv Sci (Weinh) ; : e2401370, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981042

RESUMEN

Skyrmions, a stable topological vectorial textures characteristic with skyrmionic number, hold promise for advanced applications in information storage and transmission. While the dynamic motion control of skyrmions has been realized with various techniques in magnetics and optics, the manipulation of acoustic skyrmion has not been done. Here, the propagation and control of acoustic skyrmion along a chain of metastructures are shown. In coupled acoustic resonators made with Archimedes spiral channel, the skyrmion hybridization is found giving rise to bonding and antibonding skyrmionic modes. Furthermore, it is experimentally observed that the skyrmionic mode of acoustic velocity field distribution can be robustly transferred covering a long distance and almost no distortion of the skyrmion textures in a chain of metastructures, even if a structure defect is introduced in the travel path. The proposed localized acoustic skyrmionic mode coupling and propagating is expected in future applications for manipulating acoustic information storage and transfer.

3.
Nat Commun ; 15(1): 5014, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866774

RESUMEN

Genetic testing is crucial for precision cancer medicine. However, detecting multiple same-site insertions or deletions (indels) is challenging. Here, we introduce CoHIT (Cas12a-based One-for-all High-speed Isothermal Test), a one-pot CRISPR-based assay for indel detection. Leveraging an engineered AsCas12a protein variant with high mismatch tolerance and broad PAM scope, CoHIT can use a single crRNA to detect multiple NPM1 gene c.863_864 4-bp insertions in acute myeloid leukemia (AML). After optimizing multiple parameters, CoHIT achieves a detection limit of 0.01% and rapid results within 30 minutes, without wild-type cross-reactivity. It successfully identifies NPM1 mutations in 30 out of 108 AML patients and demonstrates potential in monitoring minimal residual disease (MRD) through continuous sample analysis from three patients. The CoHIT method is also competent for detecting indels of KIT, BRAF, and EGFR genes. Integration with lateral flow test strips and microfluidic chips highlights CoHIT's adaptability and multiplexing capability, promising significant advancements in clinical cancer diagnostics.


Asunto(s)
Sistemas CRISPR-Cas , Mutación INDEL , Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas B-raf/genética , Pruebas Genéticas/métodos , Receptores ErbB/genética , Proteínas Bacterianas , Endodesoxirribonucleasas , Proteínas Asociadas a CRISPR
4.
Geriatr Nurs ; 58: 336-343, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38875760

RESUMEN

OBJECTIVE: This study aims to examine the trends and correlates in multiple hospitalizations among older adults in China. METHODS: The data were from the China Health and Retirement Longitudinal Study (CHARLS), and generalized ordered logit model (GOLM) was used to identify the correlates of multiple hospitalizations among older adults aged≥60 years old. RESULTS: Between 2011 and 2018, the proportion of older adults having multiple hospitalizations in the past year showed an increasing trend in the total sample (p value for trend = 0.014). Being older, male, illiterate, living in the middle/western region, having higher annual per capita household expenditure, health insurance, multimorbidity, and being depressed were associated with increased odds of multiple hospitalizations. CONCLUSIONS: Our findings indicated that older adults with multiple hospitalizations may expect an increasing burden on healthcare system. More efforts are needed to improve health insurance and primary healthcare to reduce avoidable hospitalizations.

5.
Environ Sci Technol ; 58(25): 11152-11161, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38867504

RESUMEN

Research on the use of peracetic acid (PAA) activated by nonmetal solid catalysts for the removal of dissolved refractory organic compounds has gained attention recently due to its improved efficiency and suitability for advanced water treatment (AWT). Among these catalysts, nanocarbon (NC) stands out as an exceptional example. In the NC-based peroxide AWT studies, the focus on the mechanism involving multimedia coordination on the NC surface (reactive species (RS) path, electron reduction non-RS pathway, and singlet oxygen non-RS path) has been confined to the one-step electron reaction, leaving the mechanisms of multichannel or continuous electron transfer paths unexplored. Moreover, there are very few studies that have identified the nonfree radical pathway initiated by electron transfer within PAA AWT. In this study, the complete decomposition (kobs = 0.1995) and significant defluorination of perfluorooctanoic acid (PFOA, deF% = 72%) through PAA/NC has been confirmed. Through the use of multiple electrochemical monitors and the exploration of current diffusion effects, the process of electron reception and conduction stimulated by PAA activation was examined, leading to the discovery of the dynamic process from the PAA molecule → NC solid surface → target object. The vital role of prehydrated electrons (epre-) before the entry of resolvable electrons into the aqueous phase was also detailed. To the best of our knowledge, this is the first instance of identifying the nonradical mechanism of continuous electron transfer in PAA-based AWT, which deviates from the previously identified mechanisms of singlet oxygen, single-electron, or double-electron single-path transfer. The pathway, along with the strong reducibility of epre- initiated by this pathway, has been proven to be essential in reducing the need for catalysts and chemicals in AWT.


Asunto(s)
Diamante , Electrones , Ácido Peracético , Ácido Peracético/química , Diamante/química , Transporte de Electrón , Fluorocarburos/química , Caprilatos/química , Propiedades de Superficie , Purificación del Agua , Contaminantes Químicos del Agua/química
6.
Int J Biol Macromol ; 273(Pt 1): 133074, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866293

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.


Asunto(s)
Proliferación Celular , Colágeno Tipo X , Integrina beta1 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Animales , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética , Progresión de la Enfermedad , Ratones , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen
7.
Water Res X ; 23: 100225, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38711797

RESUMEN

This study thoroughly explores the application of Ultraviolet (UV) water treatment technology in urban wastewater treatment and water supply in China, highlighting its crucial role in enhancing water quality safety. UV technology, with its environmentally friendly and low-carbon characteristics, is deemed more in line with the demands of sustainable development compared to traditional chemical disinfection methods. The widespread application of UV technology in urban wastewater treatment in China, particularly in the context of urban sewage treatment, is examined. However, to better promote and apply UV technology, there is a need to deepen the understanding of this technology and its application among a broad base of users and design units. The importance of gaining in-depth knowledge about the performance of UV water treatment equipment, the design calculation basis, and operational considerations, as well as the ongoing development of relevant standards, is underscored to ensure that the equipment used in projects complies with engineering design and production requirements. Furthermore, the positive trend of UV technology in the field of advanced oxidation, indicating a promising trajectory for engineering applications, is pointed out. Regarding the prospects of industrial development, a thorough analysis is conducted in the article, emphasizing the necessity for all stakeholders to collaborate and adopt a multi-level approach to promote the sustainable development and application of UV water treatment technology. This collaborative effort is crucial for providing effective safeguards for China's environment, ecology, and human health.

8.
J Hazard Mater ; 471: 134432, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691932

RESUMEN

The use of vacuum-ultraviolet (VUV) photolysis in water treatment has been gaining significant interest due to its efficacy in degrading refractory organic contaminants and eliminating oxyanions. In recent years, the reactive species driving pollutant decomposition in VUV-based advanced oxidation and reduction processes (VUV-AOPs and VUV-ARPs) have been identified. This review aims to provide a concise overview of VUV photolysis and its advancements in water treatment. We begin with an introduction to VUV irradiation, followed by a summary of the primary reactive species in both VUV-AOPs and VUV-ARPs. We then explore the factors influencing VUV-photolysis in water treatment, including VUV irradiation dose, catalysts or activators, dissolved gases, water matrix components (e.g., DOM and inorganic anions), and solution pH. In VUV-AOPs, the predominant reactive species are hydroxyl radicals (˙OH), hydrogen peroxide (H2O2), and ozone (O3). Conversely, in VUV-ARPs, the main reactive species are the hydrated electron (eaq-) and hydrogen atom (˙H). It is worth noting that VUV-based advanced oxidation/reduction processes (VUV-AORPs) can transit between VUV-AOPs and VUV-ARPs based on the externally added chemicals and dissolved gases in the solution. Increase of the VUV irradiation dose and the concentration of catalysts/activators enhances the degradation of contaminants, whereas DOM and inorganic anions inhibit the reaction. The pH influences the redox potential of ˙OH, the speciation of contaminants and activators, and thus the overall performance of the VUV-AOPs. Conversely, an alkaline pH is favored in VUV-ARPs because eaq- predominates at higher pH.

9.
Adv Sci (Weinh) ; 11(23): e2310079, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613837

RESUMEN

The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated. Using photoswitchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions with liquid-like behavior improve bacterial aggregation and produce more compact microcolonies than static adhesions with solid-like behavior in both experiments and individual-based simulations. Consequently, dynamic cell-cell adhesions give rise to earlier quorum sensing activation, better intermixing of different bacterial populations, improved biofilm maturation, changes in the growth of cocultures, and higher yields in fermentation. The here presented approach of tuning bacterial cell-cell adhesion dynamics opens the door for regulating the structure and function of biofilms and cocultures with potential biotechnological applications.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Optogenética , Biopelículas/crecimiento & desarrollo , Adhesión Bacteriana/fisiología , Optogenética/métodos , Percepción de Quorum/fisiología
10.
Front Psychiatry ; 15: 1375999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659461

RESUMEN

Background: Maternal immune activation (MIA) is a mature means to construct a schizophrenia model. However, some preclinical studies have reported that a MIA-induced schizophrenia model seemed to have gender heterogeneity in behavioral phenotype. On the other hand, the MIA's paradigms were diverse in different studies, and many details could affect the effect of MIA. To some extent, it is not credible and scientific to directly compare the gender differences of different MIA programs. Therefore, it is necessary to study whether the sex of the exposed offspring leads to behavioral differences on the premise of maintaining a consistent MIA mode. Methods: An animal model of schizophrenia was established by the administration of 10 mg/kg Poly (I: C) when dams were on day 9 of gestation. Then, a number of female and male offspring completed a series of behavioral tests during postnatal days 61-75. Results: Compared with the female control group (n = 14), female MIA offspring (n = 12) showed a longer movement distance (d = 1.07, p < 0.05) and higher average speed (d = 1.08, p < 0.05) in the open field test (OFT). In the Y maze test, the percentage of entering the novel arm of female MIA offspring was lower (d = 0.92, p < 0.05). Compared with the male control group (n = 14), male MIA offspring (n = 13) displayed less movement distance (d = 0.93, p < 0.05) and a lower average speed (d = 0.94, p < 0.05) in the OFT. In the Y maze test, the proportion of exploration time in the novel arm of male MIA offspring was lower (d = 0.96, p < 0.05). In the EPM, male MIA offspring showed less time (d = 0.85, p < 0.05) and a lower percentage of time spent in the open arms (d = 0.85, p < 0.05). Male MIA offspring also had a lower PPI index (76 dB + 120 dB, d = 0.81, p < 0.05; 80 dB + 120 dB, d = 1.45, p < 0.01). Conclusions: Our results showed that the behavioral phenotypes induced by prenatal immune activation were highly dependent on the sex of the offspring.

11.
PeerJ ; 12: e17183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560476

RESUMEN

Background: PEBP (phosphatidyl ethanolamine-binding protein) is widely found in eukaryotes including plants, animals and microorganisms. In plants, the PEBP family plays vital roles in regulating flowering time and morphogenesis and is highly associated to agronomic traits and yields of crops, which has been identified and characterized in many plant species but not well studied in Tartary buckwheat (Fagopyrum tataricum Gaertn.), an important coarse food grain with medicinal value. Methods: Genome-wide analysis of FtPEBP gene family members in Tartary buckwheat was performed using bioinformatic tools. Subcellular localization analysis was performed by confocal microscopy. The expression levels of these genes in leaf and inflorescence samples were analyzed using qRT-PCR. Results: Fourteen Fagopyrum tataricum PEBP (FtPEBP) genes were identified and divided into three sub-clades according to their phylogenetic relationships. Subcellular localization analysis of the FtPEBP proteins in tobacco leaves indicated that FT- and TFL-GFP fusion proteins were localized in both the nucleus and cytoplasm. Gene structure analysis showed that most FtPEBP genes contain four exons and three introns. FtPEBP genes are unevenly distributed in Tartary buckwheat chromosomes. Three tandem repeats were found among FtFT5/FtFT6, FtMFT1/FtMFT2 and FtTFL4/FtTFL5. Five orthologous gene pairs were detected between F. tataricum and F. esculentum. Seven light-responsive, nine hormone-related and four stress-responsive elements were detected in FtPEBPs promoters. We used real-time PCR to investigate the expression levels of FtPEBPs among two flowering-type cultivars at floral transition time. We found FtFT1/FtFT3 were highly expressed in leaf and young inflorescence of early-flowering type, whereas they were expressed at very low levels in late-flowering type cultivars. Thus, we deduced that FtFT1/FtFT3 may be positive regulators for flowering and yield of Tartary buckwheat. These results lay an important foundation for further studies on the functions of FtPEBP genes which may be utilized for yield improvement.


Asunto(s)
Fagopyrum , Filogenia , Fagopyrum/genética , Proteínas de Plantas/genética , Genoma de Planta , Etanolaminas/metabolismo
12.
J Agric Food Chem ; 72(14): 7980-7990, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38562102

RESUMEN

Prebiotic oligosaccharides have attracted immense interest in the infant formula (IF) industry due to their unique health benefits for infants. There is a need for the reasonable supplementation of prebiotics in premium IF products. Herein, we characterized the profile of galacto-oligosaccharides (GOS) in human milk (HM) and IF using ultrahigh-performance liquid chromatography-cyclic ion mobility-mass spectrometry (UPLC-cIM-MS) technique. Additionally, we further performed a targeted quantitative analysis of five essential HM oligosaccharides (HMOs) in HM (n = 196), IF (n = 50), and raw milk of IF (n = 10) by the high-sensitivity UPLC-MS/MS method. HM exhibited a more abundant and variable HMO composition (1183.19 to 2892.91 mg/L) than IF (32.91 to 56.31 mg/L), whereas IF contained extra GOS species and non-negligible endogenous 3'-sialyllactose. This also facilitated the discovery of secretor features within the Chinese population. Our study illustrated the real disparity in the prebiotic glycome between HM and IF and provided crucial reference for formula improvement.


Asunto(s)
Fórmulas Infantiles , Leche Humana , Lactante , Humanos , Leche Humana/química , Fórmulas Infantiles/química , Prebióticos/análisis , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Oligosacáridos/química
13.
Front Neurol ; 15: 1331733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390599

RESUMEN

Background and purpose: This study aimed to explore the correlation and causal relationship between fibrinogen, D-dimer, and the severity of cerebral white matter hyperintensity (MMH). Methods: A retrospective analysis of 120 patients with cerebral small vessel disease (CSVD) confirmed by head MRI attending the Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine from August 2021 to February 2023 was performed. According to the Fazekas scale score, the patients were divided into 42 cases in the mild group, 44 cases in the moderate group, and 34 cases in the severe group. The levels of fibrinogen and D-dimer were compared among the three groups; the correlations between fibrinogen, D-dimer, and WMH severity were further analyzed; and independent risk factors for WMH severity were explored using the multivariate ordered logistic regression analysis. Furthermore, a two-sample Mendelian randomization (MR) analysis was performed to investigate the genetically predicted effect of fibrinogen and D-dimer on WMH. Results: As the severity of WMH increased, the levels of D-dimer and fibrinogen also gradually increased, and the results showed a positive correlational association, with significant differences within the groups (all p < 0.05); the multivariate ordered logistic regression model showed that after adjusting for the relevant covariates, D-dimer (OR = 5.998, 95% CI 2.213-16.252, p < 0.001) and fibrinogen (OR = 9.074, 95% CI 4.054-20.311, p < 0.001) remained independent risk factors for the severity of WMH. In the MR study, the random-effect inverse variance weighted (IVW) model showed that increased levels of genetically predicted D-dimer (OR, 1.01; 95% confidence interval 0.95-1.06; p = 0.81) and fibrinogen (OR, 1.91; 95% confidence interval 0.97-3.78; p = 0.06) were not associated with increased risk of WMH. The authors did not obtain strong evidence of a direct causal relationship between D-dimer, fibrinogen, and WMH. Conclusion: In this retrospective-based study, the authors found possible associations between D-dimer, fibrinogen, and WMH, but there was no obvious causal evidence. Further efforts are still needed to investigate the pathophysiology between D-dimer, fibrinogen, and WMH.

14.
Water Res ; 253: 121259, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377923

RESUMEN

The effectiveness of UV-based advanced oxidation processes (UV-AOPs) in degrading trace organic contaminants (TrOCs) can be significantly influenced by the ubiquitous presence of nitrate (NO3-) and nitrite (NO2-) in water and wastewater. Indeed, NO3-/NO2- can play multiple roles of NO3-/NO2- in UV-AOPs, leading to complexities and conflicting results observed in existing research. They can inhibit the degradation of TrOCs by scavenging reactive species and/or competitively absorbing UV light. Conversely, they can also enhance the elimination of TrOCs by generating additional •OH and reactive nitrogen species (RNS). Furthermore, the presence of NO3-/NO2- during UV-AOP treatment can affect the transformation pathways of TrOCs, potentially resulting in the nitration/nitrosation of TrOCs. The resulting nitro(so)-products are generally more toxic than the parent TrOCs and may become precursors of nitrogenous disinfection byproducts (N-DBPs) upon chlorination. Particularly, since the impact of NO3-/NO2- in UV-AOPs is largely due to the generation of RNS from NO3-/NO2- including NO•, NO2•, and peroxynitrite (ONOO-/ONOOH), this review covers the generation, properties, and detection methods of these RNS. From kinetic, mechanistic, and toxicologic perspectives, future research needs are proposed to advance the understanding of how NO3-/NO2- can be exploited to improve the performance of UV-AOPs treating TrOCs. This critical review provides a comprehensive framework outlining the multifaceted impact of NO3-/NO2- in UV-AOPs, contributing insights for basic research and practical applications of UV-AOPs containing NO3-/NO2-.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Nitritos , Nitratos , Rayos Ultravioleta , Dióxido de Nitrógeno , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Peróxido de Hidrógeno , Compuestos Orgánicos , Oxidación-Reducción
15.
Biomacromolecules ; 25(3): 1738-1748, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38340076

RESUMEN

Physical hydrogels of natural polysaccharides are considered as ideal candidates for wound dressing due to their natural biological activity and no harmful cross-linking agents. However, it remains a challenge to fabricate such hydrogel dressings in a facile and low-cost way. Herein, we reported an easy and cost-effective method to construct CO2-mediated alkali-neutralization Curdlan (CR) hydrogels without using an external cross-linking agent. Two types of hydrogels (denoted as CR-NaOH and CR-Na3PO4, respectively) were fabricated by dissolving CR powders in a NaOH or Na3PO4 aqueous solution, followed by keeping the CR alkaline solutions in air. The obtained pure CR hydrogels possessed a tunable porous structure with walls containing different forms of nanofibrils. These hydrogels exhibited much higher gel strength by comparison with the gels prepared by conventional heating treatment. They were flexible, stretchable, twistable, and conformable to arbitrarily curved skins. Moreover, they exhibited ideal swellability, proper degradability, and water vapor transmission rate, and their physicochemical properties were closely related to CR concentration in the alkaline solution. These two hydrogels also supported the growth of L929 cells. Importantly, studies on wound healing revealed that both 3CR-NaOH and 3CR-Na3PO4 hydrogels were capable of accelerating the wound healing process through recruiting more macrophages/fibroblasts, inducing more collagen deposition and neovascularization (α-SMA and CD31) without carrying any exogenous bioactive components. In conclusion, the present work not only reported promising materials for application in wound therapy but also offered a facile and safe manufacturing procedure for generating pure CR physical hydrogels with better performance.


Asunto(s)
Dióxido de Carbono , Hidrogeles , beta-Glucanos , Hidrogeles/farmacología , Hidrogeles/química , Hidróxido de Sodio/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología
16.
J Sep Sci ; 47(2): e2300771, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286735

RESUMEN

Qiangli Dingxuan (QLDX) tablet is a widely recognized traditional Chinese medicine formula that has been extensively used in China for decades to treat vertigo, tinnitus, and dizziness owing to its outstanding therapeutic outcomes. However, the complexity of the chemical components in this tablet makes it challenging to separate and identify these components. This study presented an effective and sensitive strategy for the rapid separation and simultaneous structural identification of QLDX tablet components using ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry and the UNIFI platform. Based on retention times, accurate masses, fragment ions, related literature, and authentic standards, 119 compounds were identified or tentatively characterized; these included 9 iridoids, 12 lignans, 21 phenylpropanoids, 27 flavonoids, 7 phthalides, and 43 others. Among them, 36 were confirmed using reference standards. The representative compounds with various chemical structures were studied by analyzing their fragmentation patterns and characteristic ions. In conclusion, this study established a rapid approach for characterizing the chemical constituents in QLDX tablet. The proposed approach provides a basis for qualitative analysis and quality control in the manufacturing process and is beneficial for advancing investigations into the efficacy and mechanism of action of this tablet.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Comprimidos , Iones
17.
Plant Cell Environ ; 47(4): 1300-1318, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221803

RESUMEN

Plants synthesize abundant terpenes through glandular trichomes (GTs), thereby protecting themselves from environmental stresses and increasing the economic value in some medicinal plants. However, the potential mechanisms for simultaneously regulating terpenes synthesis and GTs development remain unclear. Here, we showed that terpenes in Conyza blinii could be synthesized through capitate GTs. By treating with appropriate intensity of UV-B, the density of capitate GTs and diterpene content can be increased. Through analyzing corresponding transcriptome, we identified a MYB transcription factor CbMYB108 as a positive regulator of both diterpene synthesis and capitate GT density. Transiently overexpressing/silencing CbMYB108 on C. blinii leaves could increase diterpene synthesis and capitate GT density. Further verification showed that CbMYB108 upregulated CbDXS and CbGGPPS expression in diterpene synthesis pathway. Moreover, CbMYB108 could also upregulated the expression of CbTTG1, key WD40 protein confirmed in this study to promote GT development, rather than through interaction between CbMYB108 and CbTTG1 proteins. Thus, results showed that the UV-B-induced CbMYB108 owned dual-function of simultaneously improving diterpene synthesis and GT development. Our research lays a theoretical foundation for cultivating C. blinii with high terpene content, and broadens the understanding of the integrated mechanism on terpene synthesis and GT development in plants.


Asunto(s)
Conyza , Diterpenos , Conyza/metabolismo , Tricomas/metabolismo , Terpenos/metabolismo , Diterpenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Water Res ; 249: 120958, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064782

RESUMEN

Drinking water distribution systems (DWDSs) are important for supplying high-quality water to consumers and disinfectant is widely used to control microbial regrowth in DWDSs. However, the disinfectant's influences on microbial community and antibiotic resistome in DWDS biofilms and the underlying mechanisms driving their dynamics remain elusive. The study investigated the effects of chlorine and chloramine disinfection on the microbiome and antibiotic resistome of biofilms in bench-scale DWDSs using metagenomics assembly. Additionally, the biofilm activity and viability were monitored based on adenosine triphosphate (ATP) and flow cytometer (FCM) staining. The results showed that both chlorine and chloramine disinfectants decreased biofilm ATP, although chloramine at a lower dosage (1 mg/L) could increase it. Chloramine caused a greater decrease in living cells than chlorine. Furthermore, the disinfectants significantly lowered the microbial community diversity and altered microbial community structure. Certain bacterial taxa were enriched, such as Mycobacterium, Sphingomonas, Sphingopyxis, Azospira, and Dechloromonas. Pseudomonas aeruginosa exhibited high resistance towards disinfectants. The disinfectants also decreased the complexity of microbial community networks. Some functional taxa (e.g., Nitrospira, Nitrobacter, Nitrosomonas) were identified as keystones in chloramine-treated DWDS microbial ecological networks. Stochasticity drove biofilm microbial community assembly, and disinfectants increased the contributions of stochastic processes. Chlorine had greater promotion effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and ARG hosts than chloramine. The disinfectants also selected pathogens, such as Acinetobacter baumannii and Klebsiella pneumonia, and these pathogens also harbored ARGs and MGEs. Overall, this study provides new insights into the effects of disinfectants on biofilm microbiome and antibiotic resistome, highlighting the importance of monitoring and managing disinfection practices in DWDSs.


Asunto(s)
Desinfectantes , Agua Potable , Microbiota , Purificación del Agua , Desinfectantes/farmacología , Agua Potable/química , Cloraminas/farmacología , Cloro/farmacología , Antibacterianos/farmacología , Bacterias/genética , Biopelículas , Adenosina Trifosfato
20.
Water Res ; 249: 120894, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016224

RESUMEN

Antibiotic resistance genes (ARGs) represent emerging environmental pollutants that present health risks. Drinking water supply systems (DWSSs), including sources to tap water, play crucial roles in the dissemination and propagation of ARGs. However, there was a paucity of knowledge on the relative abundance, diversity, mobility, and pathogenic hosts of ARGs in DWSSs from source to tap. Therefore, the effects of treatments and distributions on the microbial community and ARGs from three geographical regions (downstream areas of the Yellow, Yangtze, and Pearl Rivers) were elucidated in the present study. Treatment processes lowered the complexity of the microbial community network, whereas transportation increased it. The assembly mechanisms of the microbial community and antibiotic resistome were primarily driven by stochastic processes. Distribution greatly increased the contribution of stochastic processes. Multidrug ARGs (for example, multidrug transporter and adeJ) and bacitracin ARG (bacA) were the primary mobile ARGs in drinking water, as identified by the metagenomic assembly. Achromobacter xylosoxidans, Acinetobacter calcoaceticus, and Acinetobacter junii harbored diverse multidrug ARGs and mobile genetic elements (MGEs) (recombinases, integrases, and transposases) as potential pathogens and were abundant in the disinfected water. Environmental factors, including pH, chlorine, latitude, longitude, and temperature, influenced the ARG abundance by directly regulating the MGEs and microbial community diversity. This study provides critical information on the fate, mobility, host pathogenicity, and driving factors of ARGs in drinking water, which is conducive to ARG risk assessment and management to provide high-quality drinking water to consumers.


Asunto(s)
Agua Potable , Microbiota , Antibacterianos/farmacología , Metagenoma , Agua Potable/análisis , Genes Bacterianos , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...